環境重金屬污染現狀范文
時間:2023-12-15 17:53:29
導語:如何才能寫好一篇環境重金屬污染現狀,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。
篇1
關鍵詞:湛江開發區 重金屬治理 污染現狀 治理對策
中圖分類號:G250 文獻標識碼:A 文章編號:1674-098X(2013)05(a)-0244-01
隨著湛江鋼鐵基地和中科煉化項目的建設,湛江經濟技術開發區步入重化工業加速發展時期,涉重金屬行業將迅猛增長,重金屬作為一種持久性污染物越來越多被關注和重視,制定湛江開發區重金屬污染治理對策迫在眉睫。
1 湛江開發區重金屬污染現狀、特點及發展趨勢
1.1 湛江開發區重金屬污染的現狀
重金屬污染主要來源于工業污染,工業污染大多通過廢渣、廢氣、廢水排入環境。根據湛江開發區2012年的環境統計數據可知,開發區產生重金屬的行業主要來自于重金屬冶煉、汽車零部件及配件制造和手工具制造行業,產生的重金屬主要為鉻、鉛、鋅,2012年六價鉻的產生量為0.59噸,而其他重金屬的濃度低于監測限值,不納入環境統計,產生的重金屬全部交由有處理資質的單位處理[1]。
1.2 湛江開發區重金屬污染的特點及發展趨勢
重金屬污染是指由重金屬及其化合物引起的環境污染[2]。重金屬污染較難治理,這與它的特性分不開。重金屬污染物屬于持久性污染物,具有長期性、累積性、隱蔽性、潛伏性等特點,無法從環境中徹底消除,只能改變其存在的位置或存在的狀態[3]。重金屬在其危害環境方面的特點是:微量濃度即可產生毒性,在微生物作用會轉化為毒性更強的有機金屬化合物,可被生物富集,通過食物鏈進入人體,造成慢性中毒。
雖然湛江開發區重金屬的污染現狀不是很嚴重,但是隨著湛江開發區經濟社會的快速發展,隨著湛江市鋼鐵、石化、造紙等基地建設,湛江開發區將構建以鋼鐵工業為核心的先進制造業和以石油煉化為基礎的石油化工產業。鋼鐵工業是資源密集型產業,向前延伸是礦山和其他輔助材料的采選業,向后延伸是金屬深加工、裝備制造與檢修等產業。圍繞湛江鋼鐵基地的建設,開發區將發展機械裝備制造業、船舶制造業、包裝產業、汽車制造業。湛江開發區資源開發和加工的力度相對還會加大,在有限的環境容量條件限定下,重金屬排放將不可避免地增加,重金屬污染壓力有增無減。
2 湛江開發區重金屬污染治理面臨的困境
2.1 沒有完善的重金屬污染治理防治體系
湛江開發區污染防控基礎工作薄弱,缺乏重金屬污染防治技術管理嵌入環境管理和形成常態化管理的機制,相關技術評估體系建設滯后,缺少量化的技術評估檢測平臺;缺少“產生-加工-應用-回收”全過程的重金屬污染綜合防治技術管理體系,缺乏健全的重金屬污染源數據庫。
2.2 重金屬治理技術落后
在重金屬污染治理方面,最大的瓶頸在于技術。在重金屬廢氣治理、重金屬污染土壤修復、含重金屬廢物綜合利用等方面,都缺乏經濟適用的技術,在協同減排方面的技術也非常缺乏。重金屬治理方法現在包括工程治理、生物治理、化學治理及農業治理方法。工程治理效果徹底、穩定,但實施復雜、治理費用高、易引起土壤肥力下降;生物治理實施簡便、投資少,對環境破壞小,但是治理效果不理想;化學方法治理效果和費用都適中,但容易再度活化;農業治理方法易操作、費用低,但是周期長、效果不顯著。
2.3 重金屬監測水平滯后,無法為環境決策和執法提供可靠的技術支持
重金屬污染監測需求特殊,湛江開發區重金屬污染監測技術裝備面臨諸多問題:在線監測技術裝備門類不齊,實時連續感知手段缺少;現場快速檢測技術裝備落后,應急工作被動;技術手段單一、應用成套化程度低,不符合綜合防治需求。
3 重金屬治理的對策
湛江開發區重金屬治理要遵循源頭預防、過程阻斷、末端治理的全過程、綜合防控理念,建立起完善的重金屬防治體系。
3.1 強化湛江開發區重金屬規劃目標和任務,加強區域規劃環評,嚴格執行區域環境準入政策
認真規劃,把好源頭,規劃轄區重點項目實施和重金屬相關行業產品產量變化,按照“一區一策”、“一廠一策”的原則,進一步明確轄區內重金屬污染重點區域的防控任務和防控要求,分解落實本轄區的控制目標和重點項目。
嚴格準入,嚴格控制重金屬采選和冶煉項目。積極引導涉重金屬入園入區,集中治污,實現減污增效。湛江市屬于非重點防控區域,必須嚴格控制新建、擴建增加區域重金屬污染物排放的項目,實現區域重金屬污染物排放總量比2007年排放量的零增長。
3.2 完善重金屬排放標準,確定重金屬排放基數,建立健全重金屬污染源數據庫,為重金屬污染治理提供科學依據
要繼續健全政策體系,完善重金屬排放標準,補充重金屬污染對人體健康影響的判定,包括環境質量標準中重金屬的指標和限值。
進一步摸清重金屬污染底數,明確轄區重金屬排放基數。其中廢水重金屬排放量應以2007年污染普查數據為基準,廢氣中重金屬污染物排放量應以環境統計、環境監測、排查調查等相關資料為基礎進行測算。湛江市屬重金屬防控非重點區域,要求以2007年重金屬排放量為基數,增產不增污,各年度重金屬排放量都要控制在2007年的排放總量內。
3.3 建立清潔生產全過程控制思路,強制推進重金屬污染企業實施清潔生產
清潔生產是重金屬治理最直接、最有效的方法。湛江開發區以節能減排為核心,以污染預防為重點,以提升科技水平為切入點,以工藝清潔化,設備密封化、運行自動化、計量精準化為突破口,大力推廣應用《國家重點行業清潔生產技術導向目錄》中相關的清潔生產技術,提高資源利用率。
要抓好重點企業清潔生產審核,將涉及鉛、鋅、銅、鉻、鎘和汞等重金屬行業作為開展清潔生產審核的重點,把“節能、降耗、減污、增效”的清潔生產理念貫穿于企業的各個服務、管理環節;注重全過程控制和必要的末端處理,建立“產生-加工-應用-回收”全過程的重金屬污染綜合防治技術管理體系,實現“工藝、環保一體化”,通過技術改造減少含重金屬原材料的應用,減少生產工藝過程中的重金屬副產物或污染物產生和排放,從而減輕重金屬污染對人體健康和生態環境的危害。
4 結語
總之,湛江開發區應該做好重金屬污染防治工作,有效控制重金屬污染,嚴格執行污染防治設施環?!叭瑫r”制度,全面排查轄區涉重企業,實現重金屬治理區域化、社會化。
參考文獻
篇2
關鍵詞:土壤;重金屬;污染;現狀;修復技術
中圖分類號 X833 文獻標識碼 A 文章編號 1007-7731(2017)07-0103-03
Abstract:This paper describes the present situation of soil heavy metal pollution in our country,analyzes the sources of soil heavy metals from sewage irrigation,atmospheric deposition,industrial production and agricultural activities,and analyzes the heavy metal contaminated soil remediation technology briefly.
Key words:Soil;Heavy metal;Pollution;Present situation;Remediation technology
土壤是一個開放的緩沖動力學系統,承載著環境中50%~90%的污染負荷[1-2]。隨著礦產資源開發、冶煉、加工企業等規模的擴大以及農業生產中農藥、化肥、飼料等用量的增加和不合理的使用,致使土壤中重金屬含量逐年累積,明顯高于其背景值,造成生態破壞和環境質量惡化,對農業環境和人體健康構成嚴重威脅。重金屬在土壤中移動性差、滯留時間長、難降解,可以通過生物富集作用和生物放大作用進入到農牧產品中[3],從而影響產出物的生長、產量和品質,潛在威脅人體健康[4]。本文對我國土壤重金屬污染現狀進行了簡要分析,概述了土壤中重金屬的來源,簡單介紹了物理修復、化學修復和生物修復技術在土壤重金屬污染修復方面的研究進展,以期為土壤重金屬污染修復提供參考。
1 我國土壤重金屬污染現狀
隨著礦山開采、冶煉、電鍍以及制革行業的蓬勃發展,一些企業盲目追逐經濟利益,輕視環境保護,再加上農藥、化肥、地膜、飼料添加劑等的大量使用,我國土壤中Pb、Cd、Zn等重金屬的污染狀況日益嚴重,污染面積逐年擴大,危害人類和動物的生命健康。據報道,2008年以來,全國已發生100余起重大污染事故,其中Pb、Cd、As等重金屬污染事故達30多起。據2014年國家環境保護部和國土資源部的全國土壤污染狀況調查公報顯示,全國土壤環境總狀況體不容樂觀,部分地區土壤污染較重,耕地土壤環境質量堪憂,工礦業廢棄地土壤環境問題突出。全國土壤總的點位超標率為16.1%,其中輕微、輕度、中度和重度污染點位比例分別為11.2%、2.3%、1.5%和1.1%。據農業部對我國24個省市、320個重點污染區約548萬hm2土壤調查結果顯示,污染超標的大田農作物種植面積為60萬hm2,其中重金屬含量超標的農產品產量與面積約占污染物超標農產品總量與總面積的80%以上,尤其是Pb、Cd、Hg、Cu及其復合污染尤為明顯[5]。我國的一些主要水域如淮河流域、長江流域、太湖流域、膠州灣等也都出現了重金屬污染[6]。
2 土壤重金屬來源
土壤中重金屬來源主要有內部來源和外部來源兩種。在內部來源中,由于成土母質、地形地貌、水文氣象及植被和土地利用類型等的不同,對土壤重金屬含量的影響有很大差異[7],致使部分地區土壤背景值較高。外部原因主要是人為活動的影響,是土壤重金屬污染的主要來源,主要包括以下幾個方面:
2.1 隨大氣沉降進入土壤中的重金屬 大氣沉降是造成土壤重金屬污染的一個重要途徑[6]。工業生產、汽車尾氣排放及輪胎摩擦可產生含有重金屬的有毒氣體和粉塵,經自然沉降和雨雪沉降進入土壤中,污染元素主要為Pb、Cu、Zn等。礦山開采和冶煉所帶來的大氣沉降也是土壤重金屬的重要來源[5]。有毒氣體和粉塵容易遷移和擴散,在工礦煙囪、廢物堆和公路附近的土壤中,土壤重金屬含量較高,向四周和兩側擴散減弱。研究人員對某鉛鋅冶煉廠的土壤重金屬空間分布特征的研究發現,Zn、Pb、As的主要污染來源是廢氣的大氣沉降,風力和風向是其空間分布的主要影響因子[7]。
2.2 隨污水灌溉進入土壤中的重金屬 污水灌溉一般是指利用經過一定處理的城市污水灌溉農田[6],利用污水灌溉是農業灌溉用水的重要組成部分。但由于污水中含有大量的重金屬,隨污水進入到土壤中,使得土壤中重金屬含量不斷富集。我國自20世紀60年代至今,污灌面積迅速擴大,以北方旱做地區污染最為普遍,約占全國污灌面積的90%以上,污灌導致農田重金屬Hg、Cd、Cr、Cu、Zn、Pb等含量的增加[7]。
2.3 工礦企業生產帶入土壤中的重金屬 工業生產中廣泛使用重金屬元素,工礦企業將未經嚴格處理的廢水直接排放,導致廢水中的重金屬滲入到土壤中,使得土壤中有毒重金屬含量增加[11]。礦業和工業固體廢棄物露天堆放或處理過程中,經日曬、雨淋、水洗等作用,使重金屬以射狀、漏斗狀向周圍土壤擴散。南京某合金廠周圍土壤中的Cr大大超過土壤背景值,Cr污染以工廠煙囪為中心,范圍達到1.5km2[12]。電子廢棄物在堆放和拆解過程中,會造成Pb、Cr等重金屬進入農田土壤[13-14]。
2.4 農事活動帶入土壤中的重金屬 隨著人們對農業產出物不斷增長的需求,農藥、化肥、地膜等使用量不斷增加,導致土壤中的重金屬不斷富集,造成土壤重金屬污染。農藥中含有Hg、As、Zn等重金屬,長期使用就會導致土壤中重金屬的累積。磷肥天然伴有Cd,隨著磷肥及復合肥的大量施用,土壤中有效Cd的含量不斷增加,作物吸收Cd量也在增加[15]。地膜在生產過程中加入了含Cd、Pb等重金屬的熱穩定劑,也會造成土壤重金屬含量的增加。當前有機肥肥源大多來源于集約化的養殖場,大多使用飼料添加劑,其中大多含有Cu和Zn[16],使得有機肥料中的Cu和Zn含量也明顯增加,并隨著施肥帶入到土壤中。
3 土壤重金屬污染修復技術
3.1 物理修復 一是客土、換土和深耕翻土等措施。通過這一措施,可以降低表層土壤重金屬含量,減少土壤重金屬對植物的毒害。深耕翻土適用于輕度污染的土壤,客土和換土適用于重度污染的土壤。工程措施具有穩定、徹底的有點,效果較好,但是需要大量的人力、物力,投資較大,并會破壞土體結構,降低土壤肥力。二是電動修復、電熱修復、土壤淋洗等。物理修復效果好,但是成本高,還存在著造成二次污染的風險。
3.2 化學修復 化學修復是主要是采用化學的方法改變土壤中重金屬的化學性質,來降低土壤中重金屬的遷移性和生物可利用率,減少甚至去除土壤中的重金屬,達到的土壤治理和修復的效果[17]。該技術的關鍵在于經濟有效改良劑的選擇,常用的改良劑有石灰、沸石、碳酸鈣等無機改良劑和堆肥、綠肥、泥炭等有機改良劑,不同的改良劑對重金屬的作用機理不同?;瘜W修復是在土壤原位上進行,不會破壞土地結構,簡單易行。但是化學修復只是改變了重金屬在土壤中的存在形態,并沒有去除,在一定條件下容易活化,再度造成污染。
3.3 生物修復 生修復是利用微生物或植物的生命代謝活動,改變重金屬在土壤中的化學形態,使重金屬固定或解毒,降低其在土壤環境中的移動性和生物可利用性。該方法效果好,易于操作,是目前重金屬污染的研究重點。目前生物修復技術主要集中在植物和微生物2個方面[18-19],對植物修復方面研究的較多[20-23]。生物修復不會引起二次污染,成本低,易于推廣,在技術和經濟上都優于物理修復和化學修復,已經得到了廣泛的研究和應用,是目前土壤重金屬污染治理的研究熱點。
3.4 農業生態修復 不同作物對重金屬有不同的吸附作用,可以通過采取不同的耕作制度、作物品種和種植結構的調整、肥料種類的選取等措施,增加作物對土壤重金屬的吸收,降低土壤中的重金屬含量。研究表明,調節土壤水分、pH值以及土壤水分、養分等狀況,實現對污染物所處環境介質的調控[24-25],可以改善土壤的理化性質,促使土壤中重金屬被作物有效地吸收。
4 展望
土壤是人來賴以生存的重要自然資源之一,是人類生態環境的重要組成部分。土壤重金屬污染問題已經成為當今社會的主要環境問題之一。2016年出臺的《土壤污染防治行動計劃》,無疑是我國土壤環境管理歷史上里程碑式的文件,明確了我國土壤污染防治路線圖和時間表。
土壤是一個復雜的生態系統,一旦受到污染,要將進入到土壤中的污染物清除,達到安全生產的目的是十分困難的。重金屬對土壤的污染以現有的技術而言是不可逆的。因此,土壤污染預防要比土壤污染治理重要的多。要堅持源頭預防和過程治理,以源頭控制為主,杜絕污染物進入水體、土體,有效降低污染物的排放。在土壤重金屬污染修復技術研究中,要把物理方法、化學方法、生物技術和農業生態修復措施綜合起來處理污染題,研究出更加經濟高效的治理措施,應該加大生物修復技術研究,減少物理和化學方法的使用,以免造成二次污染。
參考文獻
[1]陳懷滿,鄭春榮,周東美,等.關于我國土壤環境保護研究中一些值得關注的問題[J].農業環境科學學報,2004,23(6):1244-1245.
[2]H Ali,E Khan,M A Sajad.Phytoremediation of heavy metals-concepts and applications[J].Chemosphere,2013,91(7):869-881.
[3]KHAN S,HESHAM AEL,QIAO M.,et al.Effects of Cd and Pb on soil microbial community structure and activities[J].Environmental Science and Pollution Research,2010,17(2):288-296.
[4]孫華,孫波,張桃林.江西省貴溪冶煉廠周圍蔬菜地重金屬污染狀況評價研究[J].農業環境科學學報,2003,22(1):70-72.
[5]孫波,周生路,趙其國.基于空間變異分析的土壤重金屬復合污染研究[J].農業環境科學學報,2003,22(2):248-251.
[6]刁維萍,倪吾鐘,倪天華,等.水環境重金屬污染的現狀及其評價[J].廣東微量元素科學,2004,11(3):1-5.
[7]佘娟娟,趙世君,楊柳,等.鉛鋅冶煉廠周邊土壤重金屬的空間分布特征研究[J].江西農業學報,2014,26(6):110-113.
[8]鄭喜|,魯安懷,高翔.土壤中重金屬污染現狀與防治方法[J].生態環境學報,2002,11(1):79-84.
[9]樊霆,葉文玲,陳海燕,等.農田土壤重金屬污染狀況及修復技術研究[J].生態環境學報,2013,22(10):1727-1736.
[10]楊小波,吳慶書.城市生態學[M].北京:科學出版社,2000.
[11]FAKOYADE S,ONIANWA P.Heavy metal contamination of soil,and bioaccumulation in Guinea grass(Panicum maximum)around Ikeja Industrial Estate,Lagos,Nigeria[J].EnvironGeology,2002.43(1):145-150.
[12]張輝,馬東升.南京某合金廠土壤鉻污染研究[J].中國環境科學,1997,17(2):80-82.
[13]潘虹梅,李鳳全,葉瑋,等.電子廢棄物拆解業對周邊土壤環境的影響――以臺州路橋下谷岙村為例[J].浙江師范大學學報(自然科學版),2007,30(1):103-108.
[14]林文杰,吳榮華,鄭澤純,等.貴嶼電子垃圾處理對河流底泥及土壤重金屬污染[J].生態環境學報,2011,20(1):160-163.
[15]馬耀華,劉樹應.環境土壤學[M].西安:陜西科學技術出版社,1998:178-207.
[16]夏家淇.土壤環境質量標準詳解[M].北京:中國環境科學技術出版社,1996:7-15.
[17]劉云國,黃寶榮,練湘津,等.重金屬污染土壤化學萃取修復技術影響因素分析[J].湖南大學學報(自然科學版),2005,32(1):95-98.
[18]Macaskie L E,Dean A C R,Cheethan A K,et al.Cadmium accumulation by a citrobacter sp:The chemical nature of the accumulated metal precipitate and its location on the bacterial cells[J].Journal of General Microbi0logy,1987,133:539-544.
[19]王雄,郭瑾瓏,劉瑞霞.微生物吸附劑對重金屬的吸附特性[J].環境科學,2001,22(6):72-75
[20]蔣先軍,駱永明,趙其國.重金屬污染土壤的植物修復研究Ⅲ.金屬富集植物對鋅鎘的吸收和積累[J].土壤學報,2002,39(5):664-670.
[21]張太平,潘偉斌.環境與土壤污染的植物修復研究進展[J].生態環境,2003,12(1):76-80.
[22]許嘉琳.陸地生態系統中的重金屬[M].北京:中國環境科學技術出版社,1995.
[23]吳燕玉,王新,梁仁祿,等.重金屬復合污染對土壤-植物系統的生態效應I.對作物、微生物、苜蓿、樹木的影響[J].應用生態學報,1997,8(2):207-212.
[24]丁園.重金屬污染土壤的治理方法[J].環境與開發,2000,15(2):25-28.
篇3
關鍵詞 土壤;蔬菜;重金屬污染;評價;浙江杭州
中圖分類號 X53;X56 文獻標識碼 A 文章編號 1007-5739(2012)20-0247-02
蔬菜是人們生活中不可缺少的副食品,為人體提供所必需的多種維生素和礦物質,城鎮化速度的加快及工業的迅速發展,使得環境污染問題日益加重,致使蔬菜中重金屬和農藥殘留含量急劇增加,給人類健康造成了嚴重傷害。重金屬積累特點及其對環境的污染是目前蔬菜重金屬研究的重點。城市及其郊區是重金屬污染的重要區域,了解和掌握土壤和蔬菜重金屬的污染現狀,對指導當前和以后蔬菜無公害化生產和環境保護等方面具有重要指導意義。
1 杭州市土壤重金屬污染現狀
謝正苗等[1]調查杭州市4 個蔬菜基地土壤中Pb、Zn、Cu的含量,結果發現蔬菜基地土壤中重金屬的含量雖然未超過國家土壤重金屬環境質量標準,符合無公害蔬菜的發展要求,但已超過其自然背景值。4個調查區中拱墅區土壤中重金屬含量大于其他3個區;江干區蔬菜基地土壤—蔬菜中重金屬的空間變異很大。老城區近50%的土壤屬于Ⅲ類以上,幾乎無Ⅰ類土壤,有些特色產品的種植土壤甚至存在一定的環境風險[2]。城市土壤中的磁性物質對重金屬有顯著的富集作用,杭州市土壤的磁性物質含量分別是0.20%~2.75%(平均值0.75%),磁性物質對重金屬的富集系數大小為Fe>Cr>Cu>Mn>Pb>Zn[3]。
郭軍玲等[4]研究發現杭州市蔣村土壤已受到Zn 的明顯污染,污染等級為輕污染,喬司和下沙土壤重金屬為高度累積,七堡和蔣村土壤重金屬達到嚴重累積程度。李 儀等[5]研究發現杭州市區表土Pb、Cd和Hg含量隨離城市距離增加而下降,土壤中重金屬Pb、Cd和Hg的積累主要與大氣沉降有關;同一區塊中茶園表土重金屬Cu和Zn含量明顯高于附近林地土壤,施肥等農業措施對茶園土壤Cu和Zn的積累有較大的影響。
2 杭州市蔬菜重金屬污染情況
杭州市野外常見野生蔬菜鉛的超標率達87.5%,鎘的超標率為12.5%,銅和鋅無超標現象[6]。小青菜和小白菜中Pb超標,但Zn、Cu未超標,其富集系數順序為Zn>Pb>Cu,且小青菜更易受重金屬污染,其重金屬含量均大于小白菜[1]。
宋明義等研究發現,根莖類蔬菜中Cd、Pb常超標,葉菜類蔬菜中除Cd、Pb常超標外,Hg也常超標,豆類和茄果類情況相對較好,未發現超標現象。其中,半山附近蔬菜中Cd、Zn含量接近國家食品衛生規定的標準限值,蔬菜和水稻中以Pb超標情況較嚴重;江干區蔬菜基地的蔬菜重金屬污染也較為普遍,不同蔬菜品種中均有重金屬超標現象[2]。王玉潔等[3]研究發現蔬菜的可食部位和非可食部位Pb含量均出現嚴重超標現象,樣本超標率達100%;但是4種蔬菜可食部位含Cu量和含Zn量均未出現超標現象,部分蔬菜根系含Cu量和含Zn量卻出現超標現象。
3 蔬菜重金屬的吸收與富集規律
3.1 不同區域的差異性
北方地區蔬菜重金屬污染相對南方地區輕,南方地區污染形勢最為嚴峻的為Cd,這可能是由于南方土壤pH值低、有機質含量等決定的重金屬存在形態、活性有關。由于土壤中Cd的化學活性最強,全國范圍內Cd污染最為嚴重[7]。
重慶市小白菜中的As質量比在南岸區菜市場中可達0.068 mg/kg,但在渝中區只有0.012 mg/kg,二者相差5.7倍;渝中區菜市場藕中Hg質量比為0.189 1 mg/kg,但在北碚區菜市場中只有0.056 7 mg/kg,二者相差3.34倍[8]。
3.2 不同種類的差異性
基因型差異使得同一種蔬菜對重金屬元素的吸收、累積特點各不相同。此外,土壤粘粒含量、有機質含量、pH值等土壤環境條件都會導致蔬菜中重金屬含量差異[9]。
重金屬污染以鎘和鉛為主,根莖類和瓜果類較為突出;鎘污染最嚴重,排序為:根莖類、瓜果類、豆類、葉菜類;芋頭和蔥中鎘污染均超標,最大超標倍數分別達到1.9倍和5.1倍[10]。葉菜類蔬菜中鋅、銅、鉛平均含量均高于瓜豆類蔬菜,只有鎘的平均含量低于瓜豆類蔬菜[11]。不同種類和類型的蔬菜對重金屬的富集能力不同,Zn:葉菜類>瓜果類>根莖類;As:葉菜類>根莖類>瓜果類;Hg:根莖類>瓜果類>葉菜類[8]。
3.3 同種蔬菜對不同重金屬的吸收和富集差異性
蔬菜對Cu、Zn、Pb的相對富集能力基本一致,其富集系數順序為Pb>Cu>Zn[3]。同一種蔬菜吸收不同重金屬的能力不同,富集元素的規律是Cd>Zn、Cu>Pb、Hg、As、Cr。也有發現當Zn、Cd、Cu混施時,Cd的存在促進了大豆葉片中Zn的積累,而Cu的存在則使Zn和Cd的濃度降低[12]。
3.4 不同部位的差異性
重金屬在植株體內各部位的分布狀況不同。一般在進入器官積累多。菠菜Cd的積累量為葉片、根>莖,而Cd和Cu的積累量依次為葉片>根>莖桿,Pb的積累量則依次為根>莖>葉片;青菜葉片中的Cr、Cd、Pb、Cu等的含量均高于莖[12]。銅和鋅含量地下部要比地上部高,蒲公英地上部的銅和鎘含量明顯高于地下部,地上部分別是地下部的2.80倍和1.92倍;野三七地上部的鉛含量也比地下部高,是地下部的1.21倍;水芹地上部的鎘含量也高于地下部,是后者的1.53倍[6]。
4 評價方法
對重金屬污染評價方法有很多,主要以指數法最多,其中指數法分單項因子污染指數法和綜合污染指數法。
某樣點蔬菜的污染程度單項污染指數Pi是根據蔬菜中污染物含量與相應評價標準進行計算,其計算式為Pi=Ci/Si。式中,Ci表示污染物實測值;Si表示污染物評價標準。Pi1 為污染。
綜合污染指數法主要考察高濃度污染物對環境質量的影響,可以全面反映各污染物對土壤的不同作用。目前,內梅羅綜合污染指數法在國內應用較為普遍。
5 參考文獻
[1] 謝正苗,李靜,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的環境質量評價[J].環境科學,2006,27(4):742-747.
[2] 宋明義,劉軍保,周濤發,等.杭州城市土壤重金屬的化學形態及環境效應[J].生態環境,2008,17(2):666-670.
[3] 王玉潔,朱維琴,金俊,等.杭州市農田蔬菜中Cu、Zn和Pb污染評價及富集特性研究[J].杭州師范大學學報:自然科學版,2010,9(1):65-70.
[4] 郭軍玲,張春梅,盧升高.城市污染土壤中磁性物質對重金屬的富集作用[J].土壤通報,2009,40(6):1421-1425.
[5] 李儀,章明奎.杭州西郊茶園土壤重金屬的積累特點與來源分析[J].廣東微量元素科學,2010,17(2):18-25.
[6] 楊曉秋,丁楓華,孔文杰,等.幾種野生蔬菜重金屬積累狀況的調查研究[J].廣東微量元素科學,2005,12(7):12-16.
[7] 劉景紅,陳玉成.中國主要城市蔬菜重金屬污染格局的初步分析[J].微量元素與健康研究,2004(5):42-44.
[8] 張宇燕,陳宏.重慶市市售蔬菜中鋅、砷、汞的污染現狀評價[J].三峽環境與生態,2012(1):47-51.
[9] 鄭小林,唐純良,許瑞明,等.湛江市郊區蔬菜的重金屬含量檢測與評價[J].農業環境與發展,2004(2):34.
[10] 唐書源,張鵬程,趙治書,等.重慶蔬菜的安全質量研究[J].云南地理環境研究,2003,15(4):66-71.
篇4
[關鍵詞] 土壤重金屬污染現狀 防治措施
[中圖分類號] X53 [文獻標識碼] A [文章編號] 1003-1650(2017)05-0287-01
陸良縣隸屬于云南曲靖,陸良縣位于云南省東部,素有“滇東明珠”之稱。我縣土地面積廣闊,農業糧食的播種面積901050畝,輕重工作發展迅速,經濟實力雄厚。但是由于工業的發展和其他因素的影響,導致了我縣的環境遭到了嚴重污染,尤其是土壤的重金屬含量過高,嚴重阻礙了我縣農業經濟發展。針對這樣一個狀況,我農業綜合服務中心相關負責人組織工作小組,制定了工作重點,積極尋求土壤重金屬的污染成因、污染特點、污染危害,然后探討了土壤重金屬污染的預防和治理方式,科學合理的保護土壤,緩解重金屬污染,促進農業健康發展。
1 土壤重金屬污染現狀
1.1 金屬汞污染
土壤中汞的來源包括土壤母質、大氣中汞的干濕沉降、工業污染源、農業污染源、含汞廢棄物。其中農業污染主要是含汞農藥的使用、含汞廢水、廢氣、廢渣的排放而污染土壤所致。較低含量的金屬汞一般不會造成土壤污染,但是在土壤微生物作用下, 汞金屬轉化為具有劇烈毒性的甲基汞, 也稱汞的甲基化。金屬汞污染對農作物的危害隨著作物的種類不同而有不同。
1.2 重金屬鎘污染
在我國的重金屬土壤污染中,鎘污染是危害性最大的,鎘污染土壤特點有色金屬礦產開發、冶煉及其他工業生產排出的廢氣、廢水和廢渣都會造成鎘污染。而耕地大量使用的磷肥中也有相當高的鎘含量,因此當這些磷肥進入土壤,也加重了土壤中的鎘濃度。此外,城市污泥和垃圾的焚燒也可導致土壤中鎘含量增高,由于土壤對鎘有很強的吸著力, 因而鎘易在土壤中造成蓄積。
1.3 重金屬鉛污染
鉛是土壤污染較普遍的元素。污染源主要來自鉛化工業的發展產生的廢氣、廢水、廢渣, 汽油燃燒后的尾氣中含大量鉛, 礦山開采、 金屬冶煉、 煤的燃燒、大量含鉛化肥使用、蓄電池的丟棄等也是重要的污染源。
1.4 重金屬砷污染
土壤砷污染主要來自大氣降塵、 尾礦與含砷農藥, 燃煤是大氣中砷的主要來源。砷中毒可影響作物生長發育, 砷對植物危害的最初癥狀是葉片卷曲枯萎, 進一步是根系發育受阻, 最后是植物根、 莖、 葉全部枯死。
總的來說,土壤重金屬污染對植物的影響主要是對其生理生態過程、植物的產量和質置方面,如果污染過于嚴重的話,就會直接導致植物根系壞死,植物得不到應有的土壤營養,生長壽命大大縮減,甚至于直接死掉。
2 土壤重金屬污染的預防措施
2.1 加大環境監管和治理力度
土壤重金屬污染的情況越來越嚴重,造成了嚴重的危害,因此,政府必須引起高度重視,加大對土壤重金屬含量的監測。首先政府部門應該組織一批專業的技術人才,采用先進的監測技術和設備,對我縣的土壤進行動態監測,全面掌握重金屬污染的類型、污染的程度,充分了解土壤中金屬成分、含量的變化,統計監測信息,將土地進行重金屬篩選,根據土壤污染的具體情況,恰當的選擇土壤修復技術,為治理更大范圍的重金屬污染區積累經驗;其次要堅強環保部門對環境的監管力度,杜絕重金屬污染的來源,督促相關工業園區引進凈化設備,含重金屬元素的廢棄物進行凈化處理,減少排出量,同時嚴格控制城市生產生活廢水直接進入農田,從根本上防止重金屬對土壤的污染。
2.2 擴大土壤重金屬污染宣傳
重金屬污染已經成為我縣首要的土壤污染類型,必須提高人們的防范意思。我們可以利用先進的技術,通過互聯網平臺、以手機為載體,傳統的書籍報刊等多種形式和途徑,深入開展農產品產地土壤重金屬污染防治的宣傳工作,廣泛動員和組織社會各界力量積極參與農產品產地土壤重金屬污染防治工作,在全社會形成一種良好的社會風氣,提高人們對土壤重金屬污染的關注,讓人們了解土壤重金屬污染的嚴重危害性,自覺進行 土壤保護。
2.3 加強技術培育
將土壤重金屬污染的專業技術人員組織起來,成立土壤重金屬防治小組,深入我縣各地區,對土壤重金屬污染進行調查研究,為了更好的開展工作,一要積極開展技術培訓,不斷提高其整體業務素質,特別是基層機構人員的知識結構、技能和業務素質,提高他們的專業水平,同時我們還要根據污染情況,有針對性的開設培訓內容,更好的服務于我縣的土壤治理工作中。
2.4 客土深翻,緩解污染
重金屬的土壤污染,阻礙作物的生長發育,必須在短時間內根除,才能進行的正常的農運活動。因此我們可以在污染地區徹底挖去污染土層,換上新土,以根除污染物,也可以進行土壤的耕翻土層,采用深耕,將上下土層翻動混合,使表層土壤污染物含量減低。
2.5 施用化學改良劑,
根據土壤重金屬污染的類型,向土壤中施用石灰、堿性磷酸鹽、氧化鐵、碳酸鹽和硫化物等化學改良劑,加速有機物的分解,使重金屬固定在土壤中,降低重金屬在土壤及土壤植物體的遷移能力,使其轉化成為難溶的化合物,減少農作物的吸收,以減輕土壤中重金屬的毒害。
土壤重金屬污染的防治是環境監測的重要任務,是保障我縣廣大人民群眾身體健康的根本,是促進經濟快速發展的主要推力。采取科學有效的土壤污染防治措施,能夠有效改善土壤結構,提高土壤肥力,降低土壤環境的污染。在未來的環境監測和農業生產中,政府和人民更應該攜起手,愛護我們共有的生存土地,讓重金屬污染事件不再發生,遠離人民群眾,實現環境友好型的生存環境。
參考文獻
[1]高錦卿,土壤重金屬污染及防治措施[J].現代農業科技,2013年04期
篇5
關鍵詞:城市土壤;重金屬污染;植物修復技術;大生物量非超富集植物;綜合評估篩選法
中圖分類號:X53 文獻標識碼:A DOI編碼:10.3969/j.issn.1006-6500.2014.03.011
城市土壤因受人類活動強烈影響而區別于自然土壤,主要指厚度大于50 cm的非農用土壤,通常出現在城市和城郊區域[1-3]。城市化過程中的工業發展、城建工程的實施和居民日常生活等人類活動排放的污染物,以各種形式直接或間接地進入城市土壤,改變了城市土壤的理化屬性,造成了城市土壤的重金屬污染[4]。城市土壤重金屬既可通過直接接觸密集的城市人群而危害人體健康,又可通過對大氣、水體的影響而影響城市生態環境,進而影響生命安全[5-6]。城市土壤既可以為城市綠色植物的生長提供養分,是其必不可少的生長介質,又可以為土壤微生物提供棲息地,是其能量的重要來源之一,所以城市土壤是城市生態系統尤為重要的組成部分,與城市生態環境息息相關[5]。因此,城市土壤重金屬污染修復技術成為國內外學者研究的熱點領域。
1 城市土壤重金屬污染現狀
原成土母質和人為活動是城市土壤重金屬的來源,其中工業生產、機動車輛尾氣排放、生活垃圾堆棄等人為活動是造成城市土壤重金屬污染的主要因素。一方面,人為活動產生的重金屬以氣溶膠的形式進入大氣,經過干濕沉降間接進入土壤;另一方面,附著于廢棄物中,直接排入城市土壤,造成重金屬污染,甚至污染地下水。并且城市土壤重金屬污染具有一定的空間分布特征,總體表現為城區內部土壤重金屬含量明顯高于郊區,并且交通干線兩側、人類活動密集區、老工業區重金屬污染較為嚴重,而受人為活動影響較小的風景區、公園等功能區土壤重金屬污染則屬于中低度污染和輕微生態風險。
城市土壤Pb、Zn、Cu、Cd等重金屬多介質復合污染給人體健康帶來了極大的風險。食物鏈傳遞研究表明,重金屬已經不同程度地污染了我國的城市郊區菜地土壤[7-9],重金屬含量已超標的蔬菜大量向城市供應。除此之外,以揚塵為載體進入大氣的城市土壤重金屬,最終可通過人體的新陳代謝作用而進入體內并逐漸積累,從而直接威脅到人體健康。研究表明,北方沙塵暴天氣發生時,大氣環境中土壤重金屬元素濃度迅速增加,Pb、Zn、Cu、Cd的濃度比平常高出3~12倍[10-11]。據相關研究部門統計,上海市大約有1/3的大氣顆粒物來自于土壤揚塵[7]。此外,城市土壤重金屬元素的積累對植物、動物、微生物的生理生態等方面也產生一定的毒害,導致城市土壤的退化。
2 土壤重金屬污染修復研究現狀
近年來,科研工作者不斷探索重金屬污染土壤的修復技術,使物理、化學和生物等修復技術得到了較快的發展。由表1可知,盡管這些物理、化學修復手段對治理重金屬污染土壤具有非常重要的實踐意義,但仍具有投資大、修復效率低、對周圍環境干擾性大、易導致次生污染等諸多缺點。相比較而言,盡管植物修復技術有著種質資源較少、修復效果待改善和植物生長條件等局限性,但其仍具有技術和經濟上的雙重優勢,不僅能夠利用綠色植物的新陳代謝活動來修復土壤環境中的重金屬污染,而且具有一定的觀賞價值,有助于園林城市的建設。
廣義的植物修復技術是在多學科交叉點上發展起來的新技術,建立在植物對某種或某些化學元素的耐性和積累性基礎之上,利用植物及其根際共存微生物體系的吸收、揮發、降解和轉化作用來清除環境中的污染物的一門環境污染治理技術[12]。通常所說的植物修復技術是指選擇具有吸收富集土壤中污染元素能力的植物,并將該植物種植于特定重金屬污染的土壤上,隨著該植物收獲和植物組織器官的妥善處理,便可移除土體中的該種污染重金屬,最終達到污染治理與生態修復污染土壤的目的[13]。這種技術因為其在土壤污染治理方面的巨大應用潛力,吸引了各國相關領域的科學家進行相關研究,并取得了一定的進展。
2.1 超富集植物修復技術
現今已經發現的超富集植物約500多種,主要分布在氣候溫和的歐洲、美國、新西蘭及澳大利亞的污染區,但利用植物修復污染土壤則是近幾十年的工作。目前,關于超富集植物對重金屬耐性和積累性機理、修復性能改進及應用技術等方面的研究已經在全世界范圍內展開,并且也取得了一定的進展。此外,植物修復技術商業化因其工程性的試驗研究以及實地應用效果,在未來具有巨大的商業前景。
2.2 超富集植物修復的局限性
超富集植物在修復土壤重金屬污染方面表現出顯著的生態效益、社會效益和經濟效益。盡管利用植物修復技術修復重金屬污染土壤具有廉價、有效、使土壤免受擾動等優點,但是在實際應用中,超富集植物由于其固有的特點,大大限制了在植物修復技術中的應用。第一,大部分超富集植物生物量低下,嚴重制約了修復效率,且植株矮小,不便于機械化作業;第二,超富集植物引種易受到地域性限制,因其多為野生植物種質資源,區域性分布較強,難以適應新的生物氣候條件;第三,超富集植物往往只適用于某種特定的重金屬元素,具有較強的專一性,對土壤中其他含量較高的重金屬則表現出中毒癥狀,從而在重金屬復合污染土壤修復中的應用受到了限制;最后,超富集植物根、葉、果實等器官機械折斷、凋謝或腐爛等途徑使重金屬重返土壤,易造成二次污染,間接降低了修復效率。
2.3 大生物量非超富集植物與超富集植物修復技術
Ebbs等[16]認為超富集植物以外的其他大生物量非超富集植物也具有修復重金屬污染土壤的可能性,并提出農作物地上部可觀的生物量能夠補償地上部較低的重金屬含量的觀點。周振民等[17]指出了大生物量非超富集植物修復技術是一項非常有發展潛力的植物修復技術。因此植物修復技術走向工程實踐的主要任務是篩選與開發大生物量、富集重金屬能力強且具有觀賞性的復合型修復植物。
3 土壤重金屬污染大生物量植物修復技術研究進展
現有超富集植物種質資源貧乏,并且其具有自身的局限性,修復效果也有待于進一步加強,故植物修復技術還不成熟。另外,評價植物修復重金屬污染的標準是重金屬遷移總量,然而已經發現的超富集植物因其生物量小、生長緩慢而使重金屬遷移總量相對較低,自然種群中存在著對重金屬具有一定耐性的大生物量植物,雖然其單位質量的重金屬含量尚不滿足超富集植物的定義,但此時其所積累的重金屬絕對量反而比超積累植物的絕對量大。因此大生物量非超富集植物對城市土壤重金屬的修復作用更大。
3.1 大生物量修復植物的優勢
以大生物量植物種質資源作為篩選修復植物對象是有依據的,一方面,大生物量修復植物具備普通植物的功能特點;另一方面,大生物量修復植物還有普通植物不具備的諸多優點。主要表現為:
(1)高生物量植物種質資源豐富,有著巨大的潛力,可為篩選提供堅實的基礎;
(2)在進行城市土壤修復、調控大氣環境的同時,能夠美化環境,一舉兩得;
(3)具備觀賞性的大生物量修復植物,不會進行食物鏈的傳遞積累,減少了對人體的危害;
(4)大生物量植物對人類健康也有著一定的作用,如油松、核桃、桑樹等對桿菌和球菌的殺菌力均極強,花卉芳香油可抗菌,提高人體免疫力,可作為保健食品或調控大氣環境;
(5)在長期的生產實踐中,品種選育、植物栽培以及病蟲害防治等經驗日益豐富。因此,篩選大生物量植物修復城市土壤重金屬污染是可行的。
3.2 大生物量植物的耐性與積累性研究
4 大生物量修復植物的判斷標準與篩選
由周振民等[17]對重金屬污染土壤大生物量修復植物進行的綜合研究可知,其篩選對象主要為部分農作物、雜草、樹木和花卉。修復城市土壤的大生物量植物應具有一定的生態功能和觀賞價值,按觀賞部位可分為觀花的、觀葉的、觀芽的、觀莖的、觀果的五類;從低等到高等植物,從水生到陸生;有草本也有木本,有灌木、喬木和藤木,種類繁多。因此篩選既具有觀賞性又具有生態修復功能的大生物量修復植物就尤為重要了。
為了便于采取定性與定量相結合的綜合評估分析法篩選出具備此能力的大生物量修復植物,這就要求植物符合一定的判定標準。耐性特征、積累特征、觀賞性和生態調控功能是主要的評定指標,其中耐性特征和積累特征是最基本的判斷標準。耐性植物應該能夠在較高重金屬污染濃度的土壤上完成生命周期,并且污染處理的植物地上部生物量與對照植物的地上部生物量相比沒有明顯的下降,這才說明該植物對重金屬污染的土壤具有一定的耐性。積累特征以轉移系數和富集系數綜合表示,李庚飛等[25]研究表明,在利用大生物量非超富集植物進行重金屬污染修復時,若植物對某重金屬元素的轉移系數和地上部分富集系數均大于0.1,說明植物對該金屬元素具有富集的潛力。此外,植物觀賞性和固碳釋氧、吸收有毒有害氣體等生態調控功能等指標的納入,對采用綜合評估篩選法進行復合型修復植物的篩選更有意義。
大生物量植物種類繁多,盲目地篩選是不科學的。因此首先應該搜集資料,調查各種植物的特點及其本身生長習性,從中初選出最有可能成為修復植物的種質資源進行研究,之后再進一步確認。例如,可從受污染嚴重的區域采集仍然能夠正常生長的物種進行試驗,或從生長不易受環境影響的物種著手。初選大生物量修復植物在一定程度上可由植物的根、莖、葉初步判斷[26]。生物量與株高成正比,而生物量越大,修復效率也相應增大,因此株高是修復植物的重要選擇依據。為使篩選出的修復植物具有更好的實踐性,也應盡量地人為模擬與特定重金屬污染城市土壤條件相一致的環境條件,利用盆栽試驗篩選出大生物量復合型修復植物。
5 結 語
我國對植物修復重金屬污染土壤的研究起步較晚,篩選工作做得不多,大量有潛力的修復植物還有待發現,尤其是以大生物量修復植物為篩選對象將成為一個突破口。總的來說,用大生物量修復植物修復污染土壤的潛力巨大。在城市污染土壤修復中,大面積地應用與其他手段相結合的大生物量修復植物,既可以美化環境,又能帶來巨大的經濟效益。因此進一步提高大生物量修復植物的修復效率,應從生態位的理論出發,開展植物品種的篩選與培育、復合修復技術應用、修復效果驗證試驗等方面的研究,以適應城市需要,并將植物修復、觀賞植物苗木生產、園林景觀建設與生物質能利用有機結合,形成環境污染修復產業,走循環利用綠色發展之路。
參考文獻:
[1] 張磊,宋鳳斌,王曉波.中國城市土壤重金屬污染研究現狀及對策[J].生態環境,2004,13(2):258-260.
[2] 張甘霖,朱永官,傅伯杰.城市土壤質量演變及其生態環境效應[J].生態學報,2003,23(3):539-546.
[3] 黃勇,郭慶榮,任海,等.城市土壤重金屬污染研究綜述[J].熱帶地理,2005,25(1):14-18.
[4] Chen J.Rapid urbanization in China: A real challenge to soft protection and food security[J].Catena,2007,69(1):1-15.
[5] De Kimpe C R, Morel J L.Urban soil management: A growing concern [J].Soil Science,2000,165:31-40.
[6] 李敏,林玉鎖.城市環境鉛污染及其對人體健康的影響[J].環境監測管理與技術,2006,18(5):6-10.
[7] 黃益宗,郝曉偉,雷鳴,等.重金屬污染土壤修復技術及其修復實踐[J].農業環境科學學報,2013,32(3):409-417.
[8] 張勇.沈陽郊區土壤及農產品重金屬污染的現狀評價[J].土壤通報,2001,32(4):182-186.
[9] 王慶海,卻曉娥.治理環境污染的綠色植物修復技術[J].中國農業生態學報,2013,21(2):261-266.
[10] 王瑋,岳欣,劉紅杰,等.北京市春季沙塵暴天氣大氣氣溶膠污染特征研究[J].環境科學學報,2002,22(4):494-498.
[11] 莊國順,郭敬華,袁蕙,等.2000年我國沙塵暴的組成、來源、粒徑分布及其對全球環境的影響[J].科學通報,2001,46(3):191-197.
[12] 盛連喜,馮江,王娓,等.環境生態學導論[M].北京:高等教育出版社,2002:76-79.
[13] 吳志強,顧尚義,李海英,等.重金屬污染土壤的植物修復及超積累植物的研究進展[J].環境科學與管理,2007,32(3):67-72.
[14] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J].Journal of Geochemical Exploration,1977(7):49-57.
[15] Chaney R L. Plant uptake of inorganic waste constituents [C]//PARR J F. Land Treatment of Hazardous Wastes. Noyes Data Corporation, New Jersey:Park Ridge,1983:50-76.
[16] 韋朝陽,陳同斌.重金屬超富集植物及植物修復技術研究進展[J].生態學報,2001,21(7):1 196-1 203.
[17] 周振民,朱彥云.土壤重金屬污染大生物量植物修復技術研究進展[C]//第三屆全國農業環境科學學術研討會論文集.天津:[出版社不詳],2009.
[18] 劉維濤,張銀龍,陳喆敏,等.礦區綠化樹木對鎘和鋅的吸收與分布[J].應用生態學報,2011,19(4):725-756.
[19] 黃會一,蔣德明,張春興,等.木本植物對土壤中鎘的吸收、積累和耐性[J].中國環境科學,1989,9(5):323-330.
[20] 余國營,吳燕玉,王新.楊樹落葉前后重金屬內外遷移循環規律研究[J].應用生態學報,2009,7(2):201-208.
[21] 王廣林,張金池,莊家堯,等.31種園林植物對重金屬的富集研究[J].皖西學院學報,2011,27(5):83-87.
[22] 許妍,周啟星.天津城市交通道路揚塵排放特征及空間分布研究[J].中國環境科學,2012,6(12):34-39.
[23] 劉家女,周啟星,孫挺.Cd-Pb復合污染條件下3種花卉植物的生長反應及超積累特性研究[J].環境科學學報,2006,26(12):2 039-2 044.
[24] 陳輝蓉,吳振斌,賀鋒,等.植物抗逆性研究進展[J].環境污染治理技術與設備,2001,2(3):7-13.
篇6
(長沙醫學院公共衛生系,湖南 長沙 410219)
【摘 要】為了解2014年湘江長沙段豐、枯水期底泥中重金屬含量,在對湘江長沙段污染現狀詳細調查與分析的基礎上,利用地積累指數對湘江長沙段底泥重金屬進行綜合性的評價分析。結論:湘江長沙段水域受到不同程度的重金屬污染,從總體的污染程度分析,各種污染物的污染程度為Cd>Zn>Pb>Cu,污染的地區和時間差異大,各采樣點污染程度為:橘子洲大橋西 >黃泥塘>喬口,且枯水期大于豐水期。環境有關部門應及時采取措施,防止水域環境污染的進一步惡化。
關鍵詞 湘江長沙段;重金屬污染;地積累指數
基金項目:湖南省大學生研究性學習和創新性實驗計劃項目“2014年湘江長沙段底泥重金屬污染現狀評價”。
作者簡介:錢慧琳(1991—),學生,預防醫學專業。
通訊作者:楊雙波,37歲,女,衛生毒理學碩士,副教授,主要從事預防醫學教學及教學管理。
水體沉積物作為水環境中重金屬主要蓄積庫,可以反映水體受重金屬污染的現況[1]。湘江流域集中了湖南省六成人口和七成左右的省內生產總值,亦承載了60%以上的污染,湘江既是納污水體,又是該流域居民的重要生活飲用水及農業用水水源。由于產業結構和工業企業地區分布的不合理,部分江段重金屬含量已超過環境功能區規劃所允許的納污范圍[2-3]。近年來,隨著湘江沿岸工業“三廢"的大量排放、城市生活垃圾和污泥的不合理利用、含重金屬農藥和化肥的過量施用等,湘江流域底泥接納的各類重金屬污染物含量逐年增長,對湘江長沙段底泥重金屬污染進行研究,有利于進一步了解重金屬在環境中的遷移轉化行為,為重金屬污染的綜合防治提供依據。為此本文以長沙城市生態體系為單元,以湘江流經長沙段為研究對象,使用地積累指數法對湘江長沙段底泥重金屬污染進行定量分析評價,以便為當前湘江水域治理和城市規劃提供基礎數據。
1 研究水域概括
湘江全長858千米,流域面積9.46萬平方千米,沿途接納大小支流1300多條,流域內資源分豐富,有豐富的煤、鐵、猛、鉛、鋅、銅等礦產資源,沿岸有采選礦業和冶煉業[4]。本次研究區域為湘江流域的長沙段,湘江流域集中了湖南省六成人口和七成左右的省內生產總值,亦承載了60%以上的污染,湘江既是納污水體,又是該流域居民的重要生活飲用水及農業用水水源。由于產業結構和工業企業地區分布的不合理,部分江段重金屬含量已超過環境功能區規劃所允許的納污范圍。
2 湘江長沙段底泥重金屬污染分析與現狀評價
本研究從湘江長沙段表層底泥中的重金屬污染物入手,通過全年度監測,設計的3個斷面不同采樣點采集的底泥樣品中Cd、Pb、Zn、Cu四種重金屬元素的檢測,調查和評價湘江長沙段底泥中重金屬的污染程度。
2.1 采樣點布設及編號
本課題研究樣品采集采用斷面取樣方法,于湘江長沙段共設計3個斷面,并于每個斷面上設計2個代表性取樣點,于河邊左岸和河中心處分別進行淺層底泥取樣工作。
采樣時間間隔為枯水期(12-2月)和豐水期(5-7月)進行樣品采集,即全年度共進行2次樣品采集工作,每次采集6個代表性樣品。3個斷面具體地理位置見下表1。
2.2 樣品的采集與處理
用無擾動重力底泥采樣器采集底泥表層0~20cm沉積物,用聚乙烯保鮮袋包裝,封口并標記后帶回實驗室。將采集的底泥樣品轉移至潔凈搪瓷盤中,自然風干,剔除碩石、木屑、動植物殘體等異物,混合均勻后用瑪瑙研缽研磨處理,全部過100目尼龍篩,用廣口玻璃瓶保存備用。所用器皿均用濃度10%硝酸溶液浸泡12h以上,去離子水洗凈后自然風干[5]。
2.3 樣品的測試
底泥樣品的消解參照中國環境監測總站的《土壤元素近代分析方法》。測定Cu、Pb、Zn、Cd的底泥樣品用HNO3—HF—HclO4法消解,然后用電感耦合等離子體原子放射法測定(ICP—AES),測試過程中,每批樣品分析均作2個全程序空白,借以檢查和控制樣品在處理和測試過程中可能帶來的污染。采用平行樣控制樣品測試的精密度,平行樣的數量不少于測試樣品的10%[6-7]。
3 研究結果與討論
湘江長沙段12個底泥樣品中4種金屬含量見表2.可見于中國土壤環境質量標準(GB15618-1995)中三級標準[8]相比較,Cd元素在每個采樣點含量都有超標,Zn在枯水期黃泥塘斷面的河心采樣點超標,Pb和Cu在各個采樣點均不超標。Cd和Zn在長沙段最富集,在枯水期均數分別為土壤背景值的24.1倍、2.5倍,在豐水期分別為13.9倍、1.4倍。Cd在枯水期和豐水期的變異系數為2.56和0.58,相對較大,表示人為干預作用較大,可得出Cd元素以外源污染形式進入湘江較多。
4 底泥重金屬污染程度評價
底泥重金屬污染程度評價方法:地累計指數法
地累計指數法是德國海德堡大學沉積物研究所的科學家Muller于1979年提出的一種研究水環境沉積物中重金屬污染的定量指標[9],其計算公式是:
Igeo=log2Cn/(KBn)
式中,Cn 為元素n在沉積物中的含量(指質量比,實測值),mg/kg;K為考慮各地巖石差異可能引起背景值變動而取的常數,K=1.5;Bn 為粘質沉積巖(即普通巖)中該元素的地球化學背景值,研究中采用長沙地區土壤的背景值作為評估背景值[10],以更客觀地評價富集程度。
從表4可得:檢測金屬元素中Cd的污染程度最大,平均污染級別達到3級,為中~強度污染,其中枯水期橘子大橋西河斷面的污染達4級,屬強度污染。元素Zn稍有污染平均污染級別為1級,在枯水期橘子大橋西斷面河心和黃泥塘左岸采樣點污染達2級數中度污染。其他采樣點基本上無污染。綜合分析上述重金屬的地積累指數分級由大到小依次為:Cd、Zn、Pb、Cu。從季節分布來看,枯水期與豐水期重金屬污染物分布有差異,Cd和Zn枯水期污染大于豐水期,主要是由于豐水期湘江水流量交大,污染物不易沉積而枯水期水流較緩污染物慢慢沉積到水底。從地域分布來看,從上游到下游,污染物的分布差異較大。黃泥塘與橘子洲大橋西河段受附近冶煉廠、化工廠、城市生活廢水等的污染,是重金屬污染主要斷面,主要污染物為Cd和Zn。
5 結論
(1)與國家土壤三級標準和長沙地區土壤背景值相比較,主要污染物為Cd和Zn,枯水期污染程度大于豐水期,主要污染面為橘子大橋西河段。
(2)地積累指數方法評價結果表明,各污染物污染程度為:Cd>Zn>Pb>Cu。
(3)從本次研究顯示,橘子大橋西河段污染較嚴重,該河段屬于市區中心地帶,主要有大量的城市生活廢水和湘江沿岸地區工業廢水的排入,控制該地區重金屬污染是長沙城市環境治理迫在眉睫的任務,也是改善湘江水體環境質量的關鍵。
參考文獻
[1]李經偉,楊路華,夏輝.白洋淀底泥重金屬污染地積累指數法評價[J].人民黃河 2007(12).
[2]彭利,羅鈺,朱奕,許雄飛. 湘江長沙段沉積物重金屬污染狀況及潛在生態風險評價[J].環境研究與監測,2009,(03):1-4.
[3]劉耀馳,高栗,李志光,劉素琴,黃可龍,李倦生. 湘江重金屬污染現狀、污染原因分析與對策探討[J].環境保護科學,2010,(04):26-29.
[4]唐文清,劉利,馮永蘭.河流底泥重金屬污染現狀分析及評價[J].衡陽師范學院報,2008(6).
[5]張祥,黃堅,馬慧雪.湘江長沙段沉積物中重金屬污染評價[J].廣州化工,2012,(23):120-123.
[6]陳翠華.江西德興地區重金屬污染現狀評價及時空對比研究[D].成都理工大學,2006.
[7]Bruning H, Rulkens WH. New solvent extractionp rocess for organic and heavymetals pollutants[M]//Hinchee RE, et al. Remediation and beneficial reuseof contaminated sediments. Columbus Rich2land: Battelle Press, 2002: 283-289.
[8]戴塔根,鄧吉秋,等.長株潭城市群區域生態地球化學評價[M].長沙中南大學出版社,2008,26,174.
[9]弓曉峰,陳春麗,周文斌,簡敏菲,張振輝.鄱陽湖底泥中重金屬污染現狀評價[J].環境科學,2006(04):732-736.
篇7
[關鍵詞] 重金屬污染 土壤 水 防治
[中圖分類號] X52 [文獻標識碼] A [文章編號] 1003-1650 (2013)08-0230-01
重金屬對水體及土壤的污染形勢是很嚴峻的,據資料顯示,每年我國有1200萬噸糧食收到不同程度的不同重金屬的污染,直接經濟損失超過200億元,每年能多養活4000萬人,并且這一數字還在逐年增長,這些污染大都是由于土壤或灌溉用水受重金屬污染而造成,重金屬污染有著較強的不可預見性,因此對其防治有很大的困難,而預防才是王道。
一、重金屬的來源及其種類
1.重金屬的來源
重金屬的主要來源還是工業污染,當然,或多或少也有來自交通以及我們生活垃圾的污染,在工業污染中,來自化工行業的污染占了相當大的比例,其次就是發電廠、鋼鐵廠,最常見的就是工業中的三廢:廢水、廢棄、廢渣,三廢當中含有大量的重金屬及其化合物,不經處理便直接排放,直接導致水資源和土壤污染,當人們用了這種被污染的水去灌溉莊稼,在被污染的土地上種莊稼,就會嚴重影響莊稼的收成,重金屬也就隨植物鏈傳到人類,對人們的健康造成了嚴重的影響[1]。近幾年,有環保學者提出:中國的化工企業的工藝、設備、技術研發較落后,是造成污染嚴重的主要原因,而人為的環保意識以及地方保護環保意識的淡薄,加劇了污染,強化治理迫在眉睫。生產企業應放眼未來,倡導環保,化工生產過程盡量使用少污染和無污染的原材料。
2.重金屬的分類
2.1汞污染
汞是一種唯一的在常溫下為液態的金屬,在自然界中普遍存在,一般動物植物中都含有微量的汞,因此我們的食物中,都有微量的汞存在,可以通過排泄、毛發等代謝,不影響健康。
但是,隨著工農業的迅速發展,目前國內對汞的需求量還是很高的,問題在于這些重金屬用完之后生成的其氧化物或雜質如何處理,過量的汞如何處理,這些都是問題的關鍵之處,據調查,每年因汞中毒而死亡的人數并不在少數,如何防范含汞廢水進入農業用水系統,已經迫在眉睫,是我們不得不去面對的問題。
2.3鉛污染
鉛是一種柔軟的白色金屬,是我國最早發現的元素之一,很容易生銹,但不失光澤,鉛在工業中最重要的用途就是制造蓄電池,因此,水資源和土壤中鉛污染的主要來源就是人們對廢棄蓄電池的隨意丟棄,而鉛的化合物,常被用于合成五彩繽紛的顏料,在鉛的眾多化合物中,最重要的就是四乙基鉛,常用于汽油防爆劑,鉛的毒性隨量而增大,其主要是通過人的皮膚接觸,或者是消化道、呼吸道等進入人體器官,鉛含量多者可引起器官病變,鉛的主要毒性表現在貧血,神經受到損傷或者造成腎功能不全,生活中的鉛給我們帶來了無限的色彩和快樂,但是食物中的鉛卻能給人帶來痛苦。
二、重金屬對水體及土壤污染現狀
1.重金屬對水體污染現狀
水體中重金屬污染物的來源十分廣泛,最主要的是工礦企業排放的廢物和污水。由于這些工廠排放的污染物數量大,分布范圍廣,因而受污染的區域很大,較難控制,危害嚴重[2]。重金屬在人體內能和蛋白質及各種酶發生強烈的相互作用,使它們失去活性,也可能在人體的某些器官中富集,如果超過人體所能耐受的限度,會造成人體急性中毒、亞急性中毒、慢性中毒等,對人體會造成很大的危害。在我國,最近的一起重金屬污染事件是2011年3月中旬,浙江臺州市路橋區峰江街道,一座建在居民區中央的“臺州市速起蓄電池有限公司” 引起168名居民血鉛超標,是近幾年來浙江發生的最嚴重的一次重金屬污染事件,其原因就是電池公司將含有大量鉛的廢水排入河渠,滲入地下,居民喝了地下水之后鉛嚴重超標,而作為最大的洋垃圾市場,臺州市每年從垃圾中拆解的價值高達200億人民幣,但是拆解之后的剩余物卻隨意丟棄,丟棄的重金屬垃圾對空氣和水資源造成了嚴重的污染。目前,我國的重金屬對水體的污染正在逐年加劇,如若不采取措施,不過十幾年的時間,我們將生活在一個被重金屬污染的世界,想治理都治理不完。
二、重金屬對水體污染的防治措施
1.加快含重金屬廢水廢氣治理
廢水和廢氣是化工行業最普遍的污染物,也是和人類息息相關的一些污染,針對這些廢水和廢氣,怎么處理成為了一個棘手的問題,對于廢水的處理,目前,有三種最為讓人接受的方法,物理處理法,即利用污染物的物化性質來除掉廢水中的污染物,化學處理法,是指利用化學反應原理處理或回收廢水中的溶解物或膠體中的物質,包括中和,氧化,還原絮凝法。最后一種方法是生化處理法,這種方法是指利用微生物在廢水中對有機物進行氧化分解的新陳代謝過程,包括活性污泥法,生物濾池,氧化塘等方法。
2.強化含重金屬固體廢物污染防治
固體廢棄物是化工三廢中種類最多數量最大的一種污染物,其每年排出的數量有數億噸,破壞了植被,排入水源,對農業用水造成了嚴重的污染,進一步轉化就會進入大氣,化工廢渣的種類繁多,成分復雜,處理方法并不像廢水廢氣那樣有成套的系統和裝置。而是根據其化學組成選用不同的方法,對于有機化工廢物的處理,目前,采用較多的方法有熱分解法,焚燒法和再生利用法,近幾年發展最受歡迎的是再生利用法,將廢物經過多次的回收利用,將其中有用成分提取出來,加工成其他產品。其次就是對無極廢物的處理,其主要方法有3種,分別是可以作為二次原料資源,或者是提取其中的有用成分用于農業生產,對那些沒有什么利用價值或者已經提取有用成分的部分廢物,可以再加工為建筑材料。
三、結論
目前,我國重金屬對水體污染已經相當嚴重了,尤其是化工行業,是最主要的重金屬污染源中,如若不及時治理,將對國民經濟造成嚴重損失,對人們的身心健康造成巨大的傷害,因此,解決重金屬污染問題已經迫在眉睫。
參考文獻
[1] 李然. 水環境中重金屬污染研究概述. 四川環境, 1997(16): 18-22.
[2] 李振. 淺談重金屬水污染現狀及監測進展. 企業論道.
篇8
關鍵詞:沸石;重金屬;土壤修復;應用
中圖分類號:X53 文獻標識碼:A 文章編號:1674-0432(2011)-03-0200-1
0 引言
隨著我國工業化進程的加快,重金屬污染已成為我國土壤環境面臨的主要問題之一。土壤重金屬已經嚴重影響植物的生長及作物的生產,并隨著食物鏈進入人體,近年來不斷暴露的砷、鉛和鎘等重金屬中毒事件表明,重金屬已對部分地區人群健康構成嚴重的危害。目前,重金屬污染已經成為一個全球性的重大環境問題,并由此針對污染的土壤進行修復已經成為各國研究的重點之一。
1 沸石在土壤改良中應用前景良好
天然沸石是一種含水的堿金屬和堿土金屬的架狀鋁硅酸鹽礦物,具有較強的選擇吸附性能、離子交換性能和較大的吸附容量,在改良土壤方面有獨特的作用。我國天然沸石儲量達40億t,位列世界前茅,年生產能力800萬t。沸石具有許多獨特的特征:晶體架狀結構的沸石,中間形成很多的空腔和孔道,就使其能吸附并儲存大量分子,具有很強的吸附作用;沸石晶體骨架中陽離子與骨架聯系較弱,當其與某種金屬鹽的水溶液相接觸時,兩種容易發生陽離子交換;沸石的內部比表面積很大,每克沸石的比表面積可達355-1000m2,其結晶骨架上和平衡離子上的電荷局部密度較高,并在骨架上出現酸性位置,使其具有固體酸性質,是有效的固體催化劑和載體。
除此之外,沸石還具有良好的熱穩定性和耐酸性。由于沸石作為吸附劑和催化劑,在使用和再生時,往往要遭受高溫和強酸的作為,所以沸石的耐高溫和耐強酸的性能較好。
2 沸石在重金屬污染中的應用現狀
據報道,世界各國礦業開發所產生的尾礦每年就達50億t以上。而自20世紀50年代以來,我國大量開采各種礦產資源,在礦產資源挖掘、選礦和冶煉過程中對周邊的土壤環境產生了不同程度的污染,尤其在廣西、云南、湖南等礦業大省更為嚴重,目前這種局面并沒得到很好改變。近幾年來,政府和相關部門通過各種措施,但由于技術不成熟和資金缺乏等問題,土壤環境的根本性改善需要幾十年,甚至更長的時間。
目前,針對土壤污染而展開的修復工作層出不窮,一般集中在微生物修復、植物修復、化學修復和農業措施等這四個方面進行修復。
沸石在改善土壤養分狀況、鹽堿地改良、土壤物理性狀改善和污染土壤修復等方面的應用受到廣泛關注,國內外許多學者也開始對沸石處理重金屬污染方面也進行了相關研究。比如,江偉武等利用沸石分子篩處理含汞廢水時發現,沸石分子篩對二價汞有較強的去除作用,并有較大的吸附容量,按汞與分子篩質量比為32mg/g進行處理,汞的去除率達99%以上。劉伯元等發現,沸石還可以與化肥混合或者作為復合肥施用,可以減少有效營養元素的流失(達20%以上),并能改良土壤性能,顯著降低農業種植成本。有研究表明,沸石配以骨炭施入土壤中可有效降低土壤有效態重金屬含量,使輕度污染土壤上的蔬菜達到衛生安全標準。沸石對土壤重金屬鉛具有一定的鈍化效果,可有效抑制土壤鉛的遷移及生態有效性??梢?,合理施用天然沸石可鈍化土壤中重金屬,降低重金屬的活性,從而降低農作物的重金屬含量,在低污染土壤中應用廣泛。
沸石還可人工合成。Xavier Querol等施用粉煤灰合成沸石達到污染土壤中的重金屬固定的目的,降低其在環境中的遷移性和生物可利用性。經過試驗,當每公頃土壤中使用25000kg的沸石時,大多數金屬(Cd, Co, Cu, Ni, Zn)的浸出能力就下降約95-99%,土壤中重金屬被鈍化了,對作物的毒害也就相應減弱了。王焰新等也認為合成的沸石在處理水中重金屬時,對水中重金屬的吸附容量比粉煤灰的高。Wei yu Shi等則綜述了天然沸石修復有害重金屬污染的相關方面的理論后認為應該側重于對天然沸石的單/聯合整治。但是,也有研究認為,利用天然沸石能降低土壤中活性鋅的含量,但對酸溶性鉛和鎘的含量不產生影響。
3 沸石在土壤重金屬污染修復技術研究的展望
沸石的利用是一項新興的高效修復技術,其來源廣泛,成本低。我國煤礦資源豐富,鋼鐵水泥等工業比較發達,如果能利用粉煤灰合成沸石對污染土壤進行固化,不僅成本降低了,而且還實現了在鋼鐵水泥工業中粉煤灰的回收利用,大大減少空氣中可吸入顆粒物含量,從而達到空氣與土壤的a雙重處理的效果。所以利用沸石來處理重金屬污染土壤的技術,具有良好的經濟效益,社會效益和環境效益,因此具有廣闊的應用前景。
參考文獻
[1] 陳同斌.重金屬對土壤的污染[J].金屬世界,1999,(3):
10-11.
[2] 韋朝陽,陳同斌.重金屬污染植物修復技術的研究與應用現狀[J].地球科學進展,2002,(6):833-839.
篇9
[關鍵詞] 土壤 重金屬 污染 防范
[中圖分類號] X833 [文獻標識碼] A [文章編號] 1003-1650 (2016)06-0061-02
隨著“鎘大米”超標的報道,湖南省株洲、衡陽等地的稻米重金屬鎘超標陸續曝光,在國內外引起強烈反響,對整個糧食行業造成了很大沖擊。廣大市民在經歷了牛奶的“三聚氰胺”,豬肉“瘦肉精”等事件之后,現在又出現了糧食“鎘米”事件。因此,土壤重金屬污染治理任務更加緊迫。
1 土壤重金屬污染現狀
民以食為天,食以安為先。糧食是最基本、最重要的食品,也是生產其他食品的基本原料,保障糧食質量安全至關重要。而“食品安全”的核心挑戰就是農藥殘留和重金屬污染。我國土壤污染的形勢已相當嚴峻,據估算,全國每年受重金屬污染的糧食達1200萬噸,造成的直接經濟損失超過200億元。土壤污染造成有害物質在農產品中積累,并通過食物鏈進入人體,引發各種疾病,最終危害人體健康。
根據全國污染區的不同情形,稻米中超標的有害重金屬不只是鎘,還可能包括鉛、砷、汞、銅等。除了稻米,其他農作物同樣有可能受到重金屬超標的影響。據中國土壤學會副理事長張維理分析,我國農藥使用量達130萬噸,是世界平均水平的2.5倍。而據測算,每年大量使用的農藥僅0.1%左右可以作用于目標病蟲,99.9%的農藥則進入生態系統,造成大量的土壤中的農藥殘留、重金屬及植物激素的污染??傊?,我國土壤污染呈現一種十分復雜的特點,呈現新老污染并存,無機有機污染混合的局面。
2 土壤重金屬污染種類
土壤重金屬污染是指由于人類活動,土壤中的微量金屬元素在土壤中的含量超過背景值,過量沉積而引起的含量過高,統稱為土壤重金屬污染。
污染土壤的重金屬主要包括汞、鎘、鉛、鉻和類金屬砷等生物毒性顯著的元素,以及有一定毒性的鋅、銅、鎳等元素。
3 土壤重金屬污染的特點
3.1 重金屬不能被微生物降解,是環境中長期、潛在的污染物;
3.2 因土壤膠體和顆粒物的吸附作用,長期存在于土壤中,濃度多成垂直遞減分布;
3.3 與土壤中的配位體作用,生成絡合物或螯合物,導致重金屬在土壤中有更大的溶解度和遷移活性;
3.4 土壤重金屬可以通過食物鏈被生物富集,產生生物放大作用;
3.5 重金屬的形態不同,其活性與毒性不同,土壤pH、顆粒物以及有機質含量等條件深刻影響它在土壤中的遷移和轉化。
4 土壤重金屬污染的危害
4.1 重金屬污染對環境的危害
重金屬在土壤-作物系統中遷移直接影響到作物的生理生化和生長發育,從而影響作物的產量和品質。鎘是危害植物生長的有毒元素,例如,如果土壤中鎘含量高,會破壞葉綠素,植物葉片的結構,減少根系吸收水分和營養物質,抑制根系生長,引起植物生理失調,減少生產。鉛在農作物中的組織中可能會導致氧化、光合作用和脂肪代謝強度減弱,減少對水的吸收,耗氧量增加,從而阻礙作物生長,甚至導致作物減產等。
4.2 重金屬污染對人類的危害
金屬可通過食物鏈最終危害人類健康。比如:鎘的生物毒性顯著,會給人體帶來高血壓、心腦血管疾病、腎功能失調等一系列問題。汞食入人體后直接沉入肝臟,對大腦視力神經破壞極大。砷會使皮膚色素沉著,導致異常角質化。鉻會造成四肢麻木,精神異常。鉛是重金屬污染中毒性較大的一種,一旦進入人體很難排除,并直接傷害腦細胞,造成智力低下等。
5 土壤重金屬污染的來源
5.1 工業“三廢”對土壤中重金屬的影響
隨著經濟的發展,人們對工業的應用越來越重視,在一些經濟欠發達地區,人們環保意識薄弱,加之我國目前科技水平低和經濟實力差,未經處理的廢水、廢氣、廢渣直接在環境中的工業發展。這些重金屬也通過自然沉淀、雨水淋入土壤等方式進入土壤,進入正常循環的生態系統。例如,一些金屬冶煉廠,硫酸廠,化工廠和采礦場附近的這些重金屬也通過自然沉淀,如雨水滲入土壤的方式,然后進入生態系統的正常循環。例如,一些金屬冶煉廠,硫酸廠,化工廠和采礦場附近重金屬通過自然作用,如風力,雨水再次由重力進入土壤層,嚴重影響居民的生活質量。工業發達,由于城市人口密度大,土壤重金屬污染嚴重,從郊區到農村逐漸緩解。
5.2 農業灌溉、化肥農藥的應用
克服了自然能力的提高,天氣已成為歷史。在追求高產、穩產、科技發展的同時,為農業提供了廣泛的農藥、肥料等磷肥,含有鎘、汞、鉛、有機汞等農藥和未經處理的污染農田灌溉農田,是埋下了詛咒,對土壤重金屬污染的土壤硬化和鹽堿化,農作物產量和品質造成很大影響。
5.3 汽車尾氣的排放
汽車尾氣排放的主要污染物如一氧化碳、碳氫化合物、氮氧化物、鉛。這些物質隨風一起落,變成土壤形成污染。實驗證明,國道、公路在土壤重金屬污染較嚴重,而作為距離從近到遠,從公共道路,土壤的污染逐漸輕。
6 防范重金屬污染的途徑與措施
6.1 清理和減少化工污染源,如電鍍企業、油漆生產加工企業、化工原料生產企業、礦山開采企業、廢舊電子回收及拆解企業等。
6.2 做好雨污分流工作,充分發揮污水處理廠的作用,減少企業廢水、生活污水中重金屬對環境的危害。
6.3 減少農田化肥和農藥用量,加強畜禽糞便的處理,減少農業投入品及養殖業的污染。
6.4 做好廢舊電池(干電池、蓄電池)、廢舊電子產品、日光燈管、熒光燈、節能燈等的集中回收。據統計,一支普通的節能燈管破碎瞬間可以使周圍每立方米空氣中的汞濃度達到10~20毫克,而按規定汞在每立方米空氣中的最高允許濃度僅為0.01毫克。
6.5 提倡健康出行,以步代車,減少汽車尾氣(鉛、PM10)對環境的影響。
6.6 重金屬污染應注重于防。一旦發生污染,則很難治理。為了子孫后代的安全,我們要增強主動防范意識。
土壤重金屬污染給人類社會和自然生態環境帶來了嚴重的危害,這些危害與人類息息相關,因此,我們只有從自身做起,從控制污染的源頭采取措施,綜合性地防治土壤重金屬的污染。
參考文獻
[1]宋偉,陳百明,許悅.中國耕地土壤重金屬污染概況[J].水土保持研究,2013,20(2):293-298.
篇10
【關鍵詞】重金屬;水質污染;應用
1.環境水質重金屬污染現狀
現代工業的發展,雖極大地促進了我國經濟建設的蓬勃發展,但卻同時帶來了嚴重的環境污染,其中,重金屬污染危害尤其嚴重。重金屬污染物基本不會在自然環境中降解,最終只會順著食物鏈累積于動植物體內,進而沉積在人體內,對其身體健康產生極大的危害。
一般而言,水環境具有一定的自凈能力,能沉淀一定量的重金屬污染物質,但一旦重金屬物質的含量超出了水的自凈范圍,水環境的物態性質就會發生極大變化,從而惡化其中動植物的生長條件。據調查,我國江河湖庫等水環境,超過80%都已經被重金屬污染物嚴重污染,以黃浦江為例,其鉛含量已超出標準值的1倍,鉻含量甚至超出了兩倍以上。研究表明,重金屬污染物主要存在于水體中的懸浮物中,也有部分賦存于沉積物中,其沉淀與釋放,受水的酸堿條件影響。
2.重金屬檢測技術在環境水質分析中的應用
2.1應用綜述
方法靈敏與否、準不準確是對重金屬檢測技術在環境水質分析中的應用提出的最基本問題,當然,我們還需要考慮分析速度、檢測限等綜合因素。目前水環境重金屬檢測的常用技術有以下幾個。
(1)原子吸收光譜法。該方法最為常見,是環保相關部門推薦的標準方法,十分靈敏,檢測速度比較好,也有一定的抗干擾能力,檢出限也比較小。該方法主要利用了樣本的氣態基態原子可以吸收該元素特征譜線的性質,通過分析吸收量,可以定量得出重金屬的含量。
(2)原子熒光光度法。該方法抗干擾能力強,操作簡單,僅需使用少量的試樣就能準確分析出重金屬元素的濃度,但缺點是應用范圍有限。其原理是特定的光線被重金屬原子的蒸汽所吸收,將激發該蒸汽,使其發出特定的光線,且發射出的光線強度,與重金屬元素的濃度有關。
(3)電感耦合等離體法。該方法同樣是通過光譜分析對重金屬進行檢測的,又可具體分為ICP-AES和ICP-MS,前者測量的是重金屬元素氣化電離后發出的光線,后者測定的主要是氣化過程中重金屬元素的荷質比。電感耦合等離體法非常適宜于測量微量重金屬,具有靈敏度極高、抗干擾能力極強的特點。
(4)電化學方法。該方法利用的是重金屬元素的電化學性質,一般可具體通過測定化學電池的電阻、電位,或者重金屬元素的溶出伏安等,來具體實現重金屬污染物的檢測。該方法實現原理簡單,應用范圍廣,可同時檢測多種重金屬元素。
(5)激光誘導擊穿光譜法。高強度的激光照射在物質上,能激發出瞬態等離子體,測定等離子的光譜,就能對樣品進行詳細的分析了,這就是激光誘導擊穿光譜法的實現原理。其最大的優點就是縮短了測量時間,且不需要任何預處理。
(6)其它生物學方法。生物學方法對環境沒有任何副作用,且更加經濟快速,具備一定的自適應性,常見的方法有酶抑制法、免疫分析法,以及新發展起來的生物化學傳感器方法。酶抑制法的主要原理是重金屬污染物能降低酶的活性,導致酶的化學性質出現變化;免疫分析法主要利用抗體免疫與重金屬污染物的化學反應;生物化學傳感器是利用生物對重金屬的敏感性,進行重金屬檢測的一種新方法。
2.2重金屬檢測技術在環境水質分析中的應用實例
從上面的分析中不難發現,多種重金屬檢測技術都適宜于環境水質的分析,下面以淡水養殖池塘作為實例,對重金屬檢測技術的應用做出分析。
2.2.1檢測方法的選用
一般而言,淡水養殖池塘中的主要重金屬污染物為銅、鋅、鉛、鎘、鉻、汞、砷、鐵、錳、鎳等元素,對于銅、鋅、鉛、鎘、鐵、錳、鎳這些元素,可采用原子吸收光譜法進行檢測;對于鉻元素,可采用DPCI分光光度法進行檢測;對于汞元素和砷元素,可采用原子熒光光度法進行檢測;這里我們主要進行銅、鋅、鉛、鎘等元素的檢測。
2.2.2檢測步驟
首先,對檢測所需各種儀器進行合理處理,并對實驗用水進行蒸餾處理,檢測用水必須經過抽濾,并浸泡于預處理后的塑料儀器中。
其次,根據相應標準確定銅鋅鉛鎘各元素的檢測限,根據GB7475-1987,這四種元素按火焰原子吸收法,其檢測限分別為,5μg/L、5μg/L、25μg/L、1μg/L,再根據判定標準,做出合理的質量控制。
再次,配置不同濃度的重金屬標準溶液,通過火焰原子吸收法,繪制出不同濃度下各元素濃度對吸光度的標準曲線。需要注意的是,測定期間需準備一空白溶液,用作對比,以確定測量儀器是否準確。
然后,以同樣的環境條件,對待測溶液進行重金屬檢測,記錄其對相應元素特征譜線的吸收量,必要時可用HNO3溶液對試劑進行稀釋。
最后,根據這個吸收量,計算出各種元素的含量值,為了保證結果的準確度,需要我們進行多次重復測量。
3.結束語
重金屬檢測技術,可以讓我們準確掌握環境水質中重金屬的種類與含量,對治理水體重金屬污染意義重大,一方面,通過重金屬檢測,我們能準確查明污染水體的主要重金屬種類,進而針對性地進行治理,一方面,通過重金屬檢測,我們能對水體中重金屬的含量產生清醒的認識,為治理結果的評價打好基礎。在重金屬污染如此突出的現在,環保工作人員有必要充分應用這類技術,做好水質污染的監控與治理工作,同時還必須不斷完善重金屬檢測技術,使其更好地為治理水體污染做出貢獻。 [科]
【參考文獻】
[1]洪陵成,王林芹,張紅艷,王艷.用于環境水質分析的重金屬檢測技術[J].分析儀器,2011(1).
[2]姚振興,辛曉東,司維,趙杰,陳國棟,趙偉,楊健,杜斌.重金屬檢測方法的研究進展[J].分析測試技術與儀器,2011(1).