卷積神經網絡的發展范文

時間:2024-04-02 18:03:34

導語:如何才能寫好一篇卷積神經網絡的發展,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。

卷積神經網絡的發展

篇1

關鍵詞:深度學習;機器學習;卷積神經網絡

1概述

深度學習(Deep Learning)是人工智能、圖像建模、模式識別、神經網絡、最優化理論和信號處理等領域的交叉學科,主要構建和模擬人腦進行分析學習,它屬于機器學習的新興領域。

2大數據與深度學習

目前,光學檢測、互聯網、用戶數據、互聯網、金融公司等許多領域都出現了海量數據,采用BP算法對于訓練神經網絡出現了梯度越來越稀疏、收斂到局部最小值只能用有標簽的數據來訓練等缺點。Hinton于2006年提出了深度學習的概念,Lecun等人提出了卷積神經網絡,卷積神經網絡利用空間關系減少參數數目以提高訓練性能。

CPU和GPU計算能力大幅提升,為深度學習提供了硬件平臺和技術手段,在海量大數據處理技術上解決了早期神經網絡訓練不足出現的過擬合、泛化能力差等問題。

大數據和深度學習必將互相支撐,推動科技發展。

3深度學習模型

深度學習模型實際上是一個包含多個隱藏層的神經網絡,目前主要有卷積神經網絡,深深度置信神經網絡,循環神經網絡。

1)卷積神經網絡

在機器學習領域,卷積神經網絡屬于前饋神經網絡的一種,神經元不再是全連接的模式,而是應用了局部感受區域的策略。然而傳統的神經網絡使用神經元間全連接的網絡結構來處理圖像任務,因此,出現了很多缺陷,導致模型⑹急劇增加,及其容易過擬合。

在卷積神經網絡中,網絡中的神經元只與前一層的部分神經元連接,利用圖像數據的空間結構,鄰近像素間具有更強的相關性,單個神經元僅對局部信息進行響應,相鄰神經元感受區域存在重疊,因此,綜合所有神經元可以得到全局信息的感知。

另外,一個卷積層中的所有神經元均由同一個卷積核對不同區域數據響應而得到,即共享同一個卷積核,使得卷積層訓練參數的數量急劇減少,提高了網絡的泛化能力。

一般在卷積層后面會進行降采樣操作,對卷積層提取的特征進行聚合統計。降采樣區域一般不存在重疊現象。降采樣簡化了卷積層的輸出信息,進一步減少了訓練參數的數量,增強了網絡的泛化能力。

卷積神經網絡實現了局部特征的自動提取,使得特征提取與模式分類同步進行,適用于處理高分辨率的圖像數據。目前,卷積神經網絡在圖像分類、自然語言處理等領域得到廣泛應用。

2)深度置信網絡

深度置信網絡是一種生成模型,網絡中有若干隱藏層,同一隱藏層內的神經元沒有連接,隱藏層間的神經元全連接。神經網絡經過“反向運行”得到輸入數據。

深度置信網絡可以用做生成模型,通過前期的逐層無監督學習,神經網絡可以較好的對輸入數據進行描述,然后把訓練好的神經網絡看作深度神經網絡,最后得到分類任務的深度神經網絡。

深度置信網絡可以用于圖像識別、圖像生成等領域,深度置信網絡可以進行無監督或半監督的學習,利用無標記數據進行預訓練,提高神經網絡性能。但近幾年由于卷積神經網絡的飛速發展,深度置信網絡已經很少被提及。

3)循環神經網絡

循環神經網絡是一種專門用于處理時序數據的神經網絡,它與典型的前饋型神經網絡最大區別在于網絡中存在環形結構,隱藏層內部的神經元是互相連接的,可以存儲網絡的內部狀態,其中包含序列輸入的歷史信息,實現了對時序動態行為的描述。這里的時序并非僅僅指代時間概念上的順序,也可以理解為序列化數據間的相對位置。如語音中的發音順序,某個英語單詞的拼寫順序等。序列化輸入的任務都可以用循環神經網絡來處理。如語音、視頻、文本等。對于序列化數據,每次處理時輸入為序列中的一個元素,比如單個字符、單詞、音節,期望輸出為該輸入在序列數據中的后續元素。循環神經網絡可以處理任意長度的序列化數據。

循環神經網絡可以用于機器翻譯、連寫字識別、語音識別等。循環神經網絡和卷積網絡結合,將卷積神經網絡用于檢測并識別圖像中的物體,循環神經網絡用于識別出物體的名稱為輸入,生成合理的語句,從而實現對圖像內容的描述。

4深度學習應用

1)語音識別

語音識別技術主要包括特征提取技術、模式匹配準則及模型訓練技術三個方面。其應用領域主要有語音輸入系統、語音控制系統和智能對話查詢系統,語音識別極大地推動了人工智能的快速發展。1952年Davis等人研究了世界上第一個能識別10個英文數字發音的實驗系統。大規模的語音識別研究是在20世紀70年代以后,在小詞匯量、孤立詞的識別方面取得了實質性的進展。2012年,微軟研究院使用深度神經網絡應用在語音識別上將識別錯誤率降低了20%,取得了突破性的進展。2015年11月17日,浪潮集團聯合全球可編程芯片巨頭Altera,以及中國最大的智能語音技術提供商科大訊飛,共同了一套DNN語音識別方案。

2)圖像分析

圖像是深度學習最早嘗試的應用領域。1989年,LeCun和他的同事們就發表了卷積神經網絡的工作。2012年10月,Hinton和他的兩個學生用更深的CNN在ImageNet挑戰上獲得了第一名,使圖像識別向前躍進了一大步。

自2012年以來,深度學習應用于圖像識別使得準確率大大上升,避免了消耗人工特征抽取的時間,極大地提升了效率,目前逐漸成為主流的圖像識別與檢測方法。

篇2

關鍵詞:機器學習;深度學習;推薦算法;遠程教育

深度學習(DeepLearning),也叫階層學習,是機器學習領域研究的分支,它是學習樣本數據的表示層次和內在規律,在學習的過程中獲取某些信息,對于數據的解釋有巨大幫助。比如對文字數據的學習,在網絡上獲取關鍵字,對圖像數據的學習,進行人臉識別等等。

一、深度學習發展概述

深度學習是機器學習領域里一種對數據進行表征學習的方法。一句話總結三者之間的關系就是:“機器學習,實現人工智能的方法;深度學習,實現機器學習的技術。深度學習目前是機器學習和人工智能領域研究的主要方向,為計算機圖形學、計算機視覺等領域帶來了革命性的進步。機器學習最早在1980年被提出,1984年分類與回歸樹出現,直到1986年,Rumelhart等人反向傳播(BackPropaga-tion,BP)算法的提出,解決了感知模型只能處理線性分類的問題,1989年出現的卷積神經網絡(ConvolutionalNeuralNet-works,CNN)也因此得到了一定的發展。在1990年至2012年,機器學習逐漸成熟并施以應用,GeoffreyHinton在2006年設計出了深度信念網絡,解決了反向傳播算法神經網絡中梯度消失的問題,正式提出了深度學習的概念,逐漸走向深度學習飛速發展的時期。隨后,各種具有獨特神經處理單元和復雜層次結構的神經網絡不斷涌現,深度學習技術不斷提高人工智能領域應用方面的極限。

二、深度學習主要模型

1、卷積神經網絡卷積神經網絡(ConvolutionalNeuralNetworks,CNN)是指有著深度結構又包含著卷積計算的前饋神經網絡。卷積物理上理解為系統某一時刻的輸出是有多個輸入共同疊加的結果,就是相當于對一個原圖像的二次轉化,提取特點的過程。卷積神經網絡實際上就是一個不斷提取特征,進行特征選擇,然后進行分類的過程,卷積在CNN里,首先對原始圖像進行特征提取。所以卷積神經網絡能夠得到數據的特征,在模式識別、圖像處理等方面應用廣泛。一個卷積神經網絡主要由三層組成,即卷積層(convolutionlayer)、池化層(poolinglayer)、全連接層(fullyconnectedlayer)。卷積層是卷積神經網絡的核心部分,通過一系列對圖像像素值進行的卷積運算,得到圖像的特征信息,同時不斷地加深節點矩陣的深度,從而獲得圖像的深層特征;池化層的本質是對特征圖像進行采樣,除去冗雜信息,增加運算效率,不改變特征矩陣的深度;全連接將層間所有神經元兩兩連接在一起,對之前兩層的數據進行分類處理。CNN的訓練過程是有監督的,各種參數在訓練的過程中不斷優化,直到得到最好的結果。目前,卷積神經網絡的改進模型也被廣泛研究,如全卷積神經網絡(FullyConvolutionalNeuralNetworks,FCN)和深度卷積神經網絡(DeepConvolutionalNeuralNetworks,DCNN)等等。2、循環神經網絡區別于卷積神經網絡在圖片處理領域的應用,循環神經網絡(RecurrentNeuralNetwork,RNN)主要應用在自然語言處理領域。RNN最大的特點就是神經元的輸出可以繼續作為輸入,再次利用到神經元中循環使用。RNN是以序列的方式對數據進行讀取,這也是RNN最為獨特的特征。RNN的串聯式結構適用于時間序列的數據,可以完好保持數據中的依賴關系。循環神經網絡主要有三層結構,輸入層,隱藏層和輸出層。隱藏層的作用是對輸入層傳遞進來的數據進行一系列的運算,并將結果傳遞給輸出層進行輸出。RNN可用于許多不同的地方。下面是RNN應用最多的領域:1.語言建模和文本生成,給出一個詞語序列,試著預測下一個詞語的可能性。這在翻譯任務中是很有用的,因為最有可能的句子將是可能性最高的單詞組成的句子;2.語音識別;3.生成圖像描述,RNN一個非常廣泛的應用是理解圖像中發生了什么,從而做出合理的描述。這是CNN和RNN相結合的作用。CNN做圖像分割,RNN用分割后的數據重建描述。這種應用雖然基本,但可能性是無窮的;4.視頻標記,可以通過一幀一幀地標記視頻進行視頻搜索。3、深度神經網絡深度神經網絡(deepneuralnetworks,DNN)可以理解為有很多隱藏層的神經網絡。多層神經網絡和深度神經網絡DNN其實也是指的一個東西,DNN有時也叫做多層感知機(Mul-ti-Layerperceptron,MLP)。DNN內部的神經網絡層也是分為三類,輸入層,隱藏層和輸出層,一般來說第一層是輸入層,最后一層是輸出層,而中間的層數都是隱藏層。深度神經網絡(DNN)目前作為許多人工智能應用的基礎,并且在語音識別和圖像識別上有突破性應用。DNN的發展也非常迅猛,被應用到工業自動駕駛汽車、醫療癌癥檢測等領域。在這許多領域中,深度神經網絡技術能夠超越人類的準確率,但同時也存在著計算復雜度高的問題。因此,那些能夠解決深度神經網絡表現準確度或不會增加硬件成本高效處理的同時,又能提升效率和吞吐量的技術是現在人工智能領域能夠廣泛應用DNN技術的關鍵。

三、深度學習在教育領域的影響

1、學生學習方面通過網上學習的實時反饋數據對學生的學習模式進行研究,并修正現有教學模式存在的不足。分析網絡大數據,相對于傳統在線學習本質區別在于捕捉學生學習過程,有針對性,實現學生個性化學習。舉個例子,在學習過程中,可以通過學習平臺對學生學習課程所花費的時間,參與的程度,知識的偏好等等數據加以分析。也可以通過學生學習某門課程的次數,鼠標點擊次數、停留的時間等,來推斷學生學習情況。通過以上或類似數據匯總分析,可以正向引導學生學習,并給予積極的學習評價。這種利用計算機收集分析出來的客觀數據,很好展示了學生學習行為的結果,總結學習規律,而不需要教師多年的教學經驗來判斷。對于教育研究者而言,利用深度學習技術可以更客觀準確地了解學生,使教學工作良好發展更進一步。2、教學方面學習平臺的數據能夠對教學模式的適應度進行預測,通過學生的考試成績和對教師的線上評價等加以分析,能夠預測出某一階段的教學方式發發是否可行,影響如何。通過學生與教師的在線互動,學生測驗時完成的時間與完成的結果,都會產生大量的有效的數據,都可以為教師教學支持服務的更好開展提供幫助,從而避免低效率的教學模式造成教學資源的浪費。

四、成人遠程教育中深度學習技術的可應用性

深度學習方面的應用在眾多領域都取得了成功,比如電商商品推薦、圖像識別、自然語言處理、棋類博弈等等。在遠程教育方面,深度學習的技術還有很大的發揮空間,智能網絡教育的實現是人們的眾望所盼。若要將深度學習技術應用到遠程教育平臺,首先要清楚學生的需求和教學資源如何分配。1、針對學生的學習需求與學習特征進行分析美國斯坦福大學克里斯皮希研究團隊的研究成果顯示,通過對學生知識學習進行時間建模,可以精確預測出學生對知識點的掌握情況,以及學生在下一次學習中的表現。深度學習的應用可以幫助教師推測出學生的學習能力發展水平。通過學生與教學環境的交互行為,分析其學習風格,避免教師用經驗進行推斷而產生的誤差。2、教學資源的利用與分配深度學習技術能夠形成智能的分析結論。計算機實時采集數據集,對學生的學習情況加以分析,使教師對學生的學習狀態、情緒狀態等有更加清晰、準確的了解。有了上面良好的教學模式,教師對學生的學習狀態有了更準確的掌握,對學生的學習結果就有了更科學的教學評價。基于深度學習的人工智能技術,還可以輔助教師實現智能閱卷,通過智能閱卷自動總結出學習中出現的問題,幫助教師減少重復性勞動,減輕教師負擔。作為成人高校,遠程教育是我們的主要教學手段,也是核心教學方式,學校的教學必定是在學生方便學習的同時,以學生的學習效果為重。通過深度學習技術,可以科學地分析出學生的學習效果,對后續教與學給予科學、可靠的數據支撐。我們可以在平臺上為每位同學建立學習模型,根據學生的學習習慣為其定制個性化方案,按他們的興趣進行培養,發揮他們專業的潛能。同時,可以將學生正式在線參加學習和考試的學習行為和非學習時間瀏覽網站的行為結合到一起,更加科學地分析出學生在學習網站上感興趣的地方。采用深度學習算法,根據學生學習行為產生的海量數據推算出學生當前狀態與目標狀態之間的差距,做到精準及時的學習需求反饋。有助于幫助學生明確學習目標,教師確立教學目標,真正做好因材施教?;谏疃葘W習各種智能識別技術,可以為教師的線上教學活動增光添彩,在反饋學生學習狀態的同時,采用多種形式的教學方法吸引學生的注意力,增強教學活動的互動性,達到良好的教學效果。

篇3

關鍵詞:卷積神經網絡;語言模型;分析

1 卷積神經網絡語言模型

CNN語言模型基本結構包括輸入層、卷積層、池化層及后續的分類層。輸入層是表示語言的矩陣,該矩陣可以是通過Google word2vec或GloVe預訓練得到的詞嵌入表示,也可以是從原始數據重新訓練的語言的向量表示。輸入層之后是通過線性濾波器對輸入矩陣進行卷積操作的卷積層。在NLP問題中,輸入矩陣總是帶有固定順序的結構,因為矩陣的每一行都表示離散的符號,例如單詞或者詞組等。因此,使用等寬的濾波器是非常合理的設置。在這種設置下,僅需要考慮濾波器的高度既可以實現不同尺寸的濾波器做卷積操作。由此可知,在處理NLP問題時,卷積神經網絡的濾波器尺寸一般都是指濾波器的高度。

然后,將卷積層輸出的特征映射輸入池化層,通過池化函數為特征映射進行降維并且減少了待估計參數規模。一般的,CNN池化操作采用1-max池化函數。該函數能夠將輸入的特征映射統一生成維度相同的新映射。通過池化操作,可以將卷積層生成的特征連接成更抽象的高級特征,所得到的高級特征尺寸與輸入的句子不再存在直接關系。

最后,將得到的高級特征輸入softmax分類層進行分類操作。在softmax層,可以選擇應用dropout策略作為正則化手段,該方法是隨機地將向量中的一些值設置為0。另外還可以選擇增加l2范數約束,l2范數約束是指當它超過該值時,將向量的l2范數縮放到指定閾值。在訓練期間,要最小化的目標是分類的交叉熵損失,要估計的參數包括濾波器的權重向量,激活函數中的偏置項以及softmax函數的權重向量。

2 卷積神經網絡語言模型應用分析

CNN語言模型已經廣泛應用于諸如文本分類,關系挖掘以及個性化推薦等NLP任務,下面將對這些應用進行具體的介紹與分析。

2.1 CNN在文本分類中的應用分析

kim提出了利用CNN進行句子分類的方法。該方法涉及了較小規模的參數,并采用靜態通道的CNN實現了效果很優異的句子分類方法。通過對輸入向量的調整,進一步提高了性能實現了包括情感極性分析以及話題分類的任務。在其基礎上為輸入的詞嵌入設計了兩種通道,一種是靜態通道,另一種是動態通道。在卷積層每一個濾波器都通過靜態與動態兩種通道進行計算,然后將計算結果進行拼接。在池化層采用dropout正則化策略,并對權值向量進行l2約束。最后將該算法應用于MR、SST-1與SST-2、Subj、TREC、CR以及MPQA等數據集。MR數據集為電影評論數據集,內容為一句話的電影評論,其分類包括積極情感極性與消極情感極性兩類。SST-1與SST-2數據集為斯坦福情感樹庫是MR數據集的擴展,但該數據集已經劃分好了訓練集、驗證集及測試集并給出了細粒度的標記,標記包括非常積極、積極、中性、消極、非常消極等情感極性。Subj數據集為主觀性數據集,其分類任務是將句子分為主觀句與客觀句兩類。TREC數據集為問題數據集,其分類任務是將所有問題分為六類,例如關于數字、人物或位置等信息的問題。CR數據集為評論數據集,包括客戶對MP3、照相機等數碼產品的評論,其分類任務是將其分為積極評價與消極評價兩類。MPQA數據集是意見極性檢測任務數據集。通過實驗證明,該方法在這幾個典型數據集上都能取得非常優異的效果。

2.2 CNN在關系挖掘中的應用分析

Shen等人提出了一種新的潛在語義模型,以詞序列作為輸入,利用卷積-池化結構為搜索查詢和Web文檔學習低維語義向量表示。為了在網絡查詢或網絡文本中捕捉上下文結構,通過輸入單詞序列上下文時間窗口中的每個單詞來獲取詞匯級的n-gram語法特征,將這些特征聚合成句子級特征向量。最后,應用非線性變換來提取高級語義信息以生成用于全文字符串的連續向量表示。該模型的不同之處在于,輸入層與卷積層之間加入了word-n-gram層與letter-trigram層,它們能夠將輸入的詞序列轉變為letter-trigram表示向量。在卷積層通過上下文特征窗口發現相鄰單詞的位置特征,并變現為n-gram形式。然后通過max池化將word-n-gram特征合并為句子級的高級特征。在池化層之后增加了語義層來提取更高級的語義表示向量。

2.3 CNN在個性化推薦中的應用分析

Weston等人提出了一種能夠利用標簽(hashtag)有監督的學習網絡帖子短文本特征表示的卷e嵌入模型(Convolutional Embedding Model)。該方法利用提出的CNN模型在55億詞的大數據文本上通過預標注的100,000標簽進行訓練。該方法除了標簽預測任務本身能取得好的效果外,學習到的特征對于其它的文本表示任務也能起到非常有效的作用。該模型與其它的詞嵌入模型類似,輸入層為表示文本的矩陣,但是,在用查找表表示輸入文本的同時將標簽也使用查找表來表示。對于給定的文檔利用10萬條最頻繁出現的標簽通過評分函數對任何給定的主題標簽進行排序。

其中,econv(w)表示CNN的輸入文檔,elt(t)是候選標簽t的詞嵌入表示。因此,通過對分數f(w,t)進行排序可以獲取所有候選主題標簽中排序第一的話題進行推薦。實驗數據集采用了兩個大規模語料集,均來自流行的社交網絡文本并帶有標簽。第一個數據集稱作people數據集,包括搜集自社交網絡的2億1000萬條文本,共含有55億單詞。第二個數據集被稱作pages,包括3530萬條社交網絡文本,共含有16億單詞,內容包括企業、名人、品牌或產品。

3 結束語

卷積神經網絡應用于語言模型已經取得了非常大的發展,對于自然語言處理中的各項任務均取得了優異的結果。本文通過對幾項典型工作的分析,探討了不同卷積神經網絡模型結構在不同任務中的表現。通過綜合分析可以得出以下結論。首先,CNN的輸入采用原始數據訓練的向量表示一般效果會優于預訓練的詞嵌入表示;其次,在卷積層濾波器的尺寸一般采用寬度與輸入矩陣寬度相等的設置;最后,為了優化結果可以采用dropout正則化處理。

篇4

【關鍵詞】圖像識別;數學建模;分類算法;深度學習

引言

隨著微電子技術及計算機技術的蓬勃發展,圖像識別應運而生,圖像識別是研究用計算機代替人們自動地去處理大量的物理信息,從而代替人的腦力勞動。隨著計算機處理能力的不斷強大,圖像識別從最早的文字識別、數字識別逐漸發展到人臉識別、物體識別、場景識別、精細目標識別等,所采用的技術也從最早的模板匹配、線性分類到廣泛使用的深層神經網絡與支持向量機分類等方法。

1.圖像識別中的數學問題建模

1.1飛行器降落圖像智能識別建模

在復雜地形環境下,飛行器進行下降過程,需要采集圖像并且判斷是否符合降落要求。在對飛行器進行最終落地點的選擇時,如果降落點復雜程度較高,采集的圖像中將會產生大量的訓練樣本數目,圖像配準過程中,極大地增加了運算量,造成最佳降落點選擇的準確率降低。提出了利用圖像智能識別進行最佳降落點的建模。利用偽Zemike矩能夠對降落點的圖像形狀進行準確的描述,利用Procrustes形狀分析法提取最佳降落點的特征,利用Rank的融合決策法最終實現最佳降落點選擇的目的。

1.2人臉面部表情圖像識別的隱馬爾科夫建模

人有喜怒哀樂,目前有一種利用隱馬爾科夫模型的建模方法,可以實現對人臉表情中的情感進行識別。具體的是:首先,采用子窗口對人臉面部表情圖像進行采樣,然后利用離散余弦變換提取所需要的特征向量,通過對人臉面部圖像進行隱馬爾科夫建模,使用獲得的特征向量作為觀測向量對人臉面部圖像的隱馬爾科夫模型進行訓練,再使用訓練后的隱馬爾科夫模型對JAFFE人臉圖像測試集中地人臉表情圖像進行情感識別。

2.典型的圖像識別算法

2.1 基于Gabor變換和極限學習機的貝類圖像種類識別

對貝類圖像進行Gabor變換,提取其圖像特征,確定了圖像特征維數;采用2DPCA方法,對變換后的特征進行降維,并利用極限學習機(ELM)進行貝類圖像的分類識別。與BP神經網絡和支持向量機(SVM)實驗對比發現,極限學習機分類器用于貝類識別不僅速度極快而且泛化性良好,算法具有較高的精度。其特點對高維圖像識別精確度高,但算法的復雜度和設計一個精確的分類器都顯得難以把握。因此該類圖像識別算法很難普遍推廣使用,識別對象必須是貝類圖像。

2.2 利用公開的全極化SAR數據,研究基于SAR圖像的檢測、極化分解和識別算法

首先根據四個線極化通道合成偽彩色圖像,從而對場景進行初步認知。利用一維距離像分析全極化各通道的信噪比強度,通過對目標進行Pauli分解得到目標的奇次散射分量和偶次散射分量,從而完成對海雜波、建筑物和艦船的相干分量的研究。其特點過程簡單易掌握,但識別對象有限。

2.3 基于SVM的離線圖像目標分類算法

基于SVM的離線圖像目標分類算法,先對訓練集預處理,然后將處理后的圖像進行梯度直方圖提取最后對圖像目標的分離器進行檢測,但是這種圖像識別算法只是有效,實用性不強。

3.深度學習在圖像識別的應用

3.1 Deep learning的原理

深度學習是一種模擬人腦的思考方式,通過建立類似人腦的神經網絡,實現對數據的分析,即按照人類的思維做出先關解釋,形成方便人們理解的圖像、文字或者聲音。深度學習的重點是對模型的運用,模型中需要的參數是通過對大量數據的學習和分析中得到的。

深度學習有兩種類型:有監督學習和無監督學習。學習模型根據學習框架的類型來確定。比如,卷積神經網絡就是一種深度的監督學習下的機器學習模型,而深度置信網就是一種無監督學習下的機器學習模型。

3.2 深度學習的典型應用

深度學習是如今計算機領域中的一個奪人眼球的技術。而在深度學習的模型中研究熱度最高的是卷積神經網絡,它是一種能夠實現大量圖像識別任務的技術。卷積神經網絡的核心思想是局部感受野、權值共享以及時間或空間亞采集。通常卷及神經網絡使用最后一層全連接隱層的值作為對輸入樣本所提出的特征,通過外部數據進行的有監督學習,從而可以保證所得的特征具有較好的對類內變化的不變性。

3.2.1基于深度學習特征的人臉識別方法。

卷積神經網絡在人臉識別領域取得了較大突破,為了更加有效的解決復雜類內變化條件下的小樣本人臉識別問題,使用深度學習的方法來提取特征,與基于稀疏表示的方法結合起來,實驗證明了深度學習所得的人臉特征具有很好的子空間特性,而且具有可遷移性以及對類內變化的不變性。

3.2.2基于深度學習的盲文識別方法。

目前盲文識別系統存在識別率不高、圖片預處理較為復雜等問題。針對這些問題,利用深度模型堆疊去噪編碼器自動、全面學習樣本深層次特征,避免人為手工選取特征存在的多種弊端,并用學習的特征作為神經網絡的輸入,更大程度地避免了傳統神經網絡由于隨機選取初值而導致結果陷入局部極值的問題。

3.2.3基于深度學習的手繪草圖識別。

目前的手繪草圖識別方法存在費時費力,較依賴于手工特征提取等問題。基于深度學習的手繪草圖識別方法根據手繪草圖時缺失顏色、紋理信息等特點,使用大尺寸的首層卷積核獲得更多的空間結構信息,利用訓練淺層模型獲得的模型參數來初始化深度模型對應層的模型參數,以加快收斂,減少訓練時長,加入不改變特征大小的卷基層來加深網絡深度等方法實現減小錯誤率。

4.結論

圖像識別是當代人工智能的熱門研究方向,其應用領域也是超乎人類想象的,相信通過技術的不斷創新,圖像識別技術會給人們的生活帶來智能化、個性化、全面化的服務。

參考文獻:

[1]穆靜,陳芳,王長元.人臉面部表情圖像的隱馬爾科夫建模及情感識別[J].西安:西安工業大學學報,2015(09).

[2]楊靖堯,里紅杰,陶學恒.基于Gabor變換和極限學習機的貝類圖像種類識別[J].大連工業大學學報,2013(04).

[3]馬曉,張番棟,封舉富.基于深度學習特征的稀疏表示的人臉識別方法[J].智能系統學報,2016(11).

篇5

關鍵詞:人機大戰;人工智能;發展前景

中圖分類號:TP391 文獻標識碼:A

0.引言

2016年3月15日,備受矚目的“人機大戰”終于落下帷幕,最終Google公司開發的“AlphaGo”以4∶1戰勝了韓國九段棋手李世h。毫無疑問,這是人工智能歷史上一個具有里程碑式的大事件。大家一致認為,人工智能已經上升到了一個新的高度。

這次勝利與1997年IBM公司的“深藍”戰勝國際象棋世界冠軍卡斯帕羅不同。主要表現在兩個方面:

(1)AlphaGo的勝利并非僅僅依賴強悍的計算能力和龐大的棋譜數據庫取勝,而是AlphaGo已經擁有了深度學習的能力,能夠學習已經對弈過的棋盤,并在練習和實戰中不斷學習和積累經驗。

(2)圍棋比國際象棋更加復雜,圍棋棋盤有361個點,其分支因子無窮無盡,19×19格圍棋的合法棋局數的所有可能性是冪為171的指數,這樣的計算量相當巨大。英國圍棋聯盟裁判托比表示:“圍棋是世界上最為復雜的智力游戲,它簡單的規則加深了棋局的復雜性”。因此,進入圍棋領域一直被認為是目前人工智能的最大挑戰。

簡而言之,AlphaGo取得勝利的一個很重要的方面就是它擁有強大的“學習”能力。深度學習是源于人工神經網絡的研究,得益于大數據和互聯網技術。本文就從人工智能的發展歷程與現狀入手,在此基礎上分析了人工智能的未來發展前景。

1.人工智能的發展歷程

AlphaGo的勝利表明,人工智能發展到今天,已經取得了很多卓越的成果。但是,其發展不是一帆風順的,人工智能是一個不斷進步,并且至今仍在取得不斷突破的學科?;仡櫲斯ぶ悄艿陌l展歷程,可大致分為孕育、形成、暗淡、知識應用和集成發展五大時期。

孕育期:1956年以前,數學、邏輯、計算機等理論和技術方面的研究為人工智能的出現奠定了基礎。德國數學家和哲學家萊布尼茨把形式邏輯符號化,奠定了數理邏輯的基礎。英國數學家圖靈在1936年創立了自動機理論(亦稱圖靈機),1950年在其著作《計算機與智能》中首次提出“機器也能思維”,被譽為“人工智能之父”。總之,這些人為人工智能的孕育和產生做出了巨大的貢獻。

形成期:1956年夏季,在美國達特茅斯大學舉辦了長達2個多月的研討會,熱烈地討論用機器模擬人類智能的問題。該次會議首次使用了“人工智能”這一術語。這是人類歷史上第一次人工智能研討會,標志著人工智能學科的誕生。其后的十幾年是人工智能的黃金時期。在接下來的幾年中,在眾多科學家的努力下,人工智能取得了矚目的突破,也在當時形成了廣泛的樂觀思潮。

暗淡期:20世紀70年代初,即使最杰出的AI程序也只能解決問題中最簡單的部分,發展遇到瓶頸也就是說所有的AI程序都只是“玩具”,無法解決更為復雜的問題。隨著AI遭遇批評,對AI提供資助的機構也逐漸停止了部分AI的資助。資金上的困難使得AI的研究方向縮窄,缺少了以往的自由探索。

知識應用期:在80年代,“專家系統”(Expect System)成為了人工智能中一個非常主流的分支?!皩<蚁到y”是一種程序,為計算機提供特定領域的專門知識和經驗,計算機就能夠依據一組從專門知識中推演出的邏輯規則在某一特定領域回答或解決問題。不同領域的專家系統基本都是由知識庫、數據庫、推理機、解釋機制、知識獲取等部分組成。

集成發展期:得益于互聯網的蓬勃發展、計算機性能的突飛猛進、分布式系統的廣泛應用以及人工智能多分支的協同發展,人工智能在這一階段飛速發展。尤其是隨著深度學習和人工神經網絡研究的不斷深入,人工智能在近幾十年中取得了長足的進步,取得了令人矚目的成就。

人工智能發展到今天,出現了很多令人矚目的研究成果。AlphaGo的勝利就是基于這些研究成果的一個里程碑。當前人工智能的研究熱點主要集中在自然語言處理、機器學習、人工神經網絡等領域。

2.人工智能l展現狀與前景

人工智能當前有很多重要的研究領域和分支。目前,越來越多的AI項目依賴于分布式系統,而當前研究的普遍熱點則集中于自然語言處理、機器學習和人工神經網絡等領域。

自然語言處理:自然語言處理(Natural Language Processing,簡稱NLP),是語言學與人工智能的交叉學科,其主要功能就是實現讓機器明白人類的語言,這需要將人類的自然語言轉化為計算機能夠處理的機器語言。

自然語言處理主要包括詞法分析、句法分析和語義分析三大部分。詞法分析的核心就是分詞處理,即單詞的邊界處理。句法分析就是對自然語言中句子的結構、語法進行分析如辨別疑問句和感嘆句等。而語義分析則注重情感分析和整個段落的上下文分析,辨別一些字詞在不同的上下文定的語義和情感態度。

當前自然語言的處理主要有兩大方向。一種是基于句法-語義規則的理性主義理論,該理論認為需要為計算機制定一系列的規則,計算機在規則下進行推理與判斷。因此其技術路線是一系列的人為的語料建設與規則制定。第二種是基于統計學習的經驗主義理論,這種理論在最近受到普遍推崇。該理論讓計算機自己通過學習并進行統計推斷的方式不停地從數據中“學習”語言,試圖刻畫真實世界的語言現象,從數據中統計語言的規律。

機器學習:機器學習(Machine Learning)是近20年來興起的人工智能一大重要領域。其主要是指通過讓計算機在數據中自動分析獲得規律,從而獲取“自我學習”的能力,并利用規律對未知數據進行判斷和預測的方法。

機器學致可以分為有監督的學習和無監督的學習。有監督的學習是從給定的訓練數據集中練出一個函數和目標,當有新的數據到來時,可以由訓練得到函數預測目標。有監督的學習要求訓練集同時有輸入和輸出,也就是所謂的特征和目標。而依據預測的結果是離散的還是連續的,將有監督的學習分為兩大問題,即統計分類問題和回歸分析問題。統計分類的預測結果是離散的,如腫瘤是良性還是惡性等;而回歸分析問題目標是連續的,如天氣、股價等的預測。

無監督學習的訓練集則沒有人為標注的結果,這就需要計算機去發現數據間的聯系并用來分類等。一種常見的無監督學習是聚類分析(Cluster Analysis),它是將相似的對象通過靜態分類的方法分成不同的組別或者是特定的子集,讓同一個子集中的數據對象都有一些相似的屬性,比較常用的聚類方法是簡潔并快速的“K-均值”聚類算法。它基于K個中心并對距離這些中心最近的數據對象進行分類。

機器學習還包括如半監督學習和增強學習等類別??偠灾瑱C器學習是研究如何使用機器來模擬人類學習活動的一門學科,而其應用隨著人工智能研究領域的深入也變得越來越廣泛,如模式識別、計算機視覺、語音識別、推薦算法等領域越來越廣泛地應用到了機器學習中。

人工神經網絡:在腦神經科學領域,人們認為人類的意識及智能行為,都是通過巨大的神經網絡傳遞的,每個神經細胞通過突出與其他神經細胞連接,當通過突觸的信號強度超過某個閾值時,神經細胞便會進入激活狀態,向所連接的神經細胞一層層傳遞信號。于1943年提出的基于生物神經元的M-P模型的主要思想就是將神經元抽象為一個多輸入單輸出的信息處理單元,并通過傳遞函數f對輸入x1,x2…,xn進行處理并模擬神經細胞的激活模式。主要的傳遞函數有階躍型、線性型和S型。

在此基礎上,對神經網絡算法的研究又有諸多進展。日本的福島教授于1983年基于視覺認知模型提出了卷積神經網絡計算模型。通過學習訓練獲取到卷積運算中所使用的卷積系數,并通過不同層次與自由度的變化,可以得到較為優化的計算結果。而AlphaGo也正是采用了這種深度卷積神經網絡(DCNN)模型,提高了AlphaGo的視覺分類能力,也就是所謂的“棋感”,增強了其對全盤決策和把握的能力。

3.人工智能的發展前景

總體來看,人工智能的應用經歷了博弈、感知、決策和反饋這幾個里程碑。在以上4個領域中,既是縱向發展的過程,也是橫向不斷改進的過程。

人工智能在博弈階段,主要是實現邏輯推理等功能,隨著計算機處理能力的進步以及深度學習等算法的改進,機器擁有了越來越強的邏輯與對弈能力。在感知領域,隨著自然語言處理的進步,機器已經基本能對人類的語音與語言進行感知,并且能夠已經對現實世界進行視覺上的感知?;诖髷祿奶幚砗蜋C器學習的發展,機器已經能夠對周圍的環境進行認知,例如微軟的Kinect就能夠準確的對人的肢體動作進行判斷。該領域的主要實現還包括蘋果的Siri,谷歌大腦以及無人駕駛汽車中的各種傳感器等。在以上兩個階段的基礎上,機器擁有了一定的決策和反饋的能力。無人駕駛汽車的蓬勃發展就是這兩個里程碑很好的例證。Google的無人駕駛汽車通過各種傳感器對周圍的環境進行感知并處理人類的語言等指令,利用所收集的信息進行最后的決策,比如操作方向盤、剎車等。

人工智能已經滲透到生活中的各個領域。機器已經能識別語音、人臉以及視頻內容等,從而實現各種人際交互的場景。在醫學領域,人工智能可以實現自動讀片和輔助診斷以及個性化t療和基因排序等功能。在教育領域,機器也承擔了越來越多的輔助教育,智能交互的功能。在交通領域,一方面無人車的發展表明無人駕駛是一個可以期待的未來,另一方面人工智能能夠帶來更加通暢和智能的交通。另外人工智能在安防、金融等領域也有非常廣闊的發展前景。總之,人工智能在一些具有重復性的和具備簡單決策的領域已經是一種非常重要的工具,用來幫助人們解決問題,創造價值。

參考文獻

[1]阮曉東.從AlphaGo的勝利看人工智能的未來[J].新經濟導刊,2016 (6):69-74.

篇6

關鍵詞:人臉識別技術;病毒管控;人工智能;神經網絡

互聯網在今天的社會中發揮著舉足輕重的作用。如今社會,隨著許多人工智能技術、網絡技術、云計算等互聯網技術不斷發展,像人臉識別等技術的應用越來越廣泛,在控制病毒傳播途徑等場合發揮了巨大作用,不斷地提高著社會的安全性和便利性,不僅提高了防控中病毒檢測效率,也為病毒的控制提供了可靠的技術方法,能夠及時發現和控制公共場所的安全隱患因素,避免對社會經濟、居民生活造成破壞,。但目前的人臉識別等技術還存在許多缺陷,需要完善和革新,充滿著巨大的潛力和進步空間。

1人臉識別技術研究意義

人臉識別技術是一種生物特征識別技術,最早產生于上世紀60年代,基于生理學、圖像處理、人機交互及認知學等方面的一種識別技術。相比于其他人類特征像指紋識別、聲紋識別、虹膜識別等技術,人臉識別雖然存在人臉識別單一性低,且區分度難度高、易受環境影響等不足。但是人臉識別技術擁有速度快、大范圍群體識別及非接觸、遠距離可識別等優勢,都是其他生物識別識別技術所不具備的,而在傳播性強、感染風險大的病毒傳播過程中,這些顯然是必須要考慮的重要影響因素。通過將人臉識別等人工智能技術引入信息管理系統,綜合集成視頻監控、圖像處理、深度學習和大數據等技術,結合非接觸測溫、定位等技術,助力病情防控,在一定程度上推動病毒病情防控信息化、智能化發展進程。可作為加強公共場所的人員的體溫實時監測、地址信息定位的監控管理,規范公共場所針對病毒傳播的預防行為。

2人臉識別技術

2.1人臉檢測技術

人臉檢測是自動人臉識別系統中的一個關鍵環節。早期的人臉識別研究主要針對具有較強約束條件的人臉圖象(如無背景的圖象),往往假設人臉位置靜止或者容易獲取。人臉檢測分為前深度學習時期,AdaBoost框架時期以及深度學習時期。前深度學習時期,人們將傳統的計算機視覺算法運用于人臉檢測,使用了模板匹配技術,依賴于人工提取特征,然后用這些人工特征訓練一個檢測器;后來技術發展,在2001年Viola和Jones設計了一種人臉檢測算法,它使用簡單的Haar-like特征和級聯的AdaBoost分類器構造檢測器,檢測速度較之前的方法有2個數量級的提高,并且保持了很好的精度,稱這種方法為VJ框架。VJ框架是人臉檢測歷史上第一個最具有里程碑意義的一個成果,奠定了基于AdaBoost目標檢測框架的基礎,使用級聯AdaBoost分類器進行目標檢測的思想是:用多個AdaBoost分類器合作實現對候選框的分類,這些分類器組成一個流水線,對滑動窗口中的候選框圖像進行判定,確定檢測目標是人臉還是非人臉。Adaboost框架技術的精髓在于用簡單的強分類器在初期快速排除掉大量的非人臉窗口,同時保證高的召回率,使得最終能通過所有級強分類器的樣本數數量較少。在深度學習時期,開始將卷積神經網絡應用于人臉檢測領域。研究方向有兩種:一是將適用于多任務的目標檢測網絡應用于人臉檢測中;另一種是研究特定的的人臉檢測網絡。人臉檢測技術具有特殊唯一性和穩定性,在現今社會對于構建居民身份識別系統,病毒傳播防控系統,以及計算機視覺交互模型的構建具有廣泛的應用。人臉檢測技術不僅作為人臉識別的首要步驟,也在許多其他領域發揮巨大影響,如人臉關鍵點提取、人臉追蹤、基于內容的檢索、數字視頻處理、視頻檢測、安防監控、人證比對、社交等領域都有重要的應用價值。數碼相機、手機等移動端上的設備已經大量使用人臉檢測技術實現成像時對人臉的對焦、圖集整理分類等功能,各種虛擬美顏相機也需要人臉檢測技術定位人臉。評價一個人臉檢測算法好壞的指標是檢測率和誤報率,我們定義檢測率為:算法要求在檢測率和誤報率之間盡量平衡,理想的情況是達到高檢測率,低誤報率。

2.2人臉識別技術

目前主要流行的人臉識別技術包括幾何特征識別,模型識別,特征臉識別和基于深度學習/神經網絡的的人臉識別技術等。人臉特征識別主要通過對人臉面部結構特征如眼睛、鼻子等五官幾何特點及其相對位置分布等,生成圖像,并計算各個面部特征之間的歐式距離、分布、大小等關系該方法比較簡單,反應速度快,并且具有魯棒性強等優點,但是在實際環境下使用容易受檢測的環境的變化、人臉部表情變化等影響,精度通常不高,細節處理上不夠完善。模型識別技術主要包括隱馬爾可夫模型、主動表象模型、主動形狀模型等,識別率較高,并且對表情等變化影響較小。特征臉識別來源于主成分描述人臉照片技術(PCA技術),從數學上來講,特征臉就是人臉的圖像集協方差矩陣的特征向量。該技術能有效的顯示人臉信息,效率較高?;谏疃葘W習的人臉識別是獲取人臉圖像特征,并將包含人臉信息的特征進行線性組合等,提取人臉圖像的特征,學習人臉樣本數據的內在規律和表示層次??梢圆捎萌缛龑忧梆丅P神經網絡。BP神經網絡是1986年由Rumelhart和McClelland為首的科學家提出的概念,是一種按照誤差逆向傳播算法訓練的多層前饋神經網絡,是應用最廣泛的神經網絡模型之一。BP網絡本質上是一種能夠學量的輸入與輸出之間的映射關系的輸入到輸出的映射,從結構上講,BP網絡具有輸入層、隱藏層和輸出層;從本質上講,BP算法就是以網絡誤差平方為目標函數、采用梯度下降法來計算目標函數的最小值。BP神經網路輸入層有n個神經元節點,輸出層具有m個神經元,隱含層具有k個神經元,采用BP學習算法訓練神經網絡。BP算法主要包括兩個階段:向前傳播階段和向后傳播階段。在向前傳播階段,信息從輸入層經過逐級的變換,傳送到輸出層。這個過程也是在網絡完成訓練后正常運行時執行。將Xp作為輸入向量,Yp為期望輸出向量則BP神經網絡向前傳播階段的運算,得到實際輸出表達式為向后傳播階段主要包括兩大步驟:①計算實際輸出Op與對應理想輸出Yp之差;②按極小化誤差方法調整帶權矩陣。之所以將此階段稱為向后傳播階段,是對應于輸入信號的正常傳播而言的,因為該階段都需要收到精度要求進行誤差處理,所以也可以稱之為誤差傳播階段。(1)確定訓練集。由訓練策略選擇樣本圖像作為訓練集。(2)規定各權值Vij,Wjk和閾值Φj,θk參數,并初始化學習率α及精度控制參數ε。(3)從訓練集中取輸入向量X到神經網絡,并確定其目標輸出向量D。(4)利用上式計算出一個中間層輸出H,再用本式計算出網絡的實際輸出Y。(5)將輸出矢量中yk與目標矢量中dk進行比較,計算輸出誤差項,對中間層的隱單元計算出L個誤差項。(6)最后計算出各權值和閾值的調整量。所以,卷積神經網絡算法是通過訓練人臉特征庫的方式進行學習生成,對不同環境下不同表現情況的人臉圖像識別有更高的精確性。

2.3人臉識別軟件實現方式

(1)采集人臉數據集,然后對數據集進行標注,對數據進行預處理變成訓練格式。(2)部署訓練模型,根據訓練算法所需依賴部署電腦環境。(3)訓練過程,下載預訓練模型,將人臉數據集分批次作為輸入開始訓練,最終輸出為訓練好的模型。(4)部署訓練好的模型,捕獲畫面即可對畫面中的人臉進行實時檢測。

3人臉識別在病毒傳播防控中的應用

通過人臉識別技術,可以實現無接觸、高效率的對流動人員進行信息的收集、身份識別、定位地址信息等操作,大大減少了傳染的可能性,切斷了病毒傳播途徑,大大提高了工作效率。通過提前收錄人臉信息,采用深度學習對人臉特征模型的訓練學習,即可獲取人臉識別特征模型,再次驗證時即可實現人臉識別和個人信息快速匹配。AI人工智能幫助人們更好的解放雙手,為人們的生活和工作提供了重要的幫助。本文還提出了在人臉識別的系統基礎上,可以加入定位系統、測溫系統等,依托物聯網技術和云計算大數據,更加優化管控系統的效率。病毒傳播防控中人臉識別系統流程可以概括為圖2。

4結語

本文研究了一種人臉識別技術在病毒傳播管控系統中的應用,并分析設計了人臉識別實時監測及病毒管控系統的流程,大大提高了信息管理的效率,減弱了傳播風險。作為一門新興技術,目前的人臉識別技術還存在著諸多不足之處,像存在環境光的影響、人臉表情變化、妝容變化、佩戴口罩等都會影響到系統識別精度;另外安全問題也引人深思:現今人臉支付方式迅猛發展,錄入的人臉模型信息數據庫存在有一定的安全風險,一旦被不法分子盜取信息后果不堪設想,所以模型數據庫安全、網絡安全,也是系統開發中必須重視的問題。人臉識別為代表的人工智能技術的研究,在病毒傳播管控作出重大貢獻,依托我國領先的計算機網絡技術和5G等技術,加強人工智能技術與5G通信技術的結合,優勢互補,以此來加快大數據、人工智能和物聯網技術發展進程,對我國社會進步,促進城市建設和管理朝著高效、秩序、和諧穩定的方向不斷發展,增強我國的經濟實力有著重大價值和研究意義。

參考文獻

[1]王彥秋,馮英偉.基于大數據的人臉識別方法[J].現代電子技術,2021,44(7):87-90.

[2]李剛,高政.人臉自動識別方法綜述[J].計算機應用研究,2003,20(8):4-9,40.

[3]馬玉琨,徐姚文.ReviewofPresentationAttackDetectioninFaceRecognitionSystem[J].計算機科學與探索,2021,7(15):1195-1206.

[4]余璀璨,李慧斌.基于深度學習的人臉識別方法綜述[J].工程數學學報,2021,38.

[5]王紅星,胡永陽,鄧超.基于LBP和ELM的人臉識別算法研究與實現[J].河南理工大學學報(自然科學版),2005.

[6]鐘陳,王思翔,王文峰.面向疫情防控的人臉識別系統與標準研究[J].信息技術與標準化,2020,6,11-13,1671-539X.

[6]彭駿,吉綱,張艷紅,占濤.精準人臉識別及測溫技術在疫情防控中的應用[J].軟件導刊,2020,10,1672-7800.

篇7

關鍵詞:智能科學與技術;興趣導向;逆向教學

0引言

智能科學與技術是信息科學與技術的核心、前沿與制高點,也是整個現代科學技術體系的頭腦中樞,是現代科學技術創新的引領和示范,是現代社會(包括經濟、社會、文化、民生、國防等)走向智能化的主導技術支柱。在越來越激烈尖銳的國際競爭環境中,智能科學與技術水平已經成為一個國家綜合國力與科技實力的標志。智能科學與技術的發展和智能科學與技術學科的人才培養,不僅僅是智能科學與技術研究與教育本身的事情,更是關系到整個社會智能化發展優劣的大事情,也是關系到整個國家強弱興衰的大事情。

科技發展,關鍵在于人才。在新的發展機遇下,國家對智能科學與技術專門人才的需求更加旺盛。因此,如何促進智能科學與技術教學方式的改革是培養厚基礎、高層次的智能科學與技術人才的基本途徑。智能科學與技術教學方式的改革,不僅發展智能科學與技術本身,而且對受教育者創新能力的提高也至關重要。

目前,網絡的普及與全社會信息化程度的提高,對我國人才培養提出了更高的要求,特別是高校在課堂教學方面,部分原有教材及培養模式亟待調整。以智能科學與技術為代表的前沿新興學科,在學科發展途徑、應用技術轉化及從業人員年齡、成長環境等方面,均與很多傳統學科存在較大的差異,而使用傳統教學方式進行人才培養,也出現了一些水土不服的現象。

1教學理念的改變

相對于傳統學科,智能科學與技術從業人員平均年齡顯現出年輕化的特點,且由于從業人員及學生普遍年齡較輕,在他們的成長過程中,外在環境相對寬松,自由、平等的理念在他們的成長過程中不斷被提及和強化。傳統“教師講、學生聽”的演講式講授方式雖然能夠在一定時間內讓學生了解大量信息,但學生接收到的大部分信息只停留在記憶層面,很難上升到理解層面,導致學生只是被動的“填鴨式”接受。

在科技發達、網絡互聯的今天,人們不是自投羅網就是被網羅其中,知識獲取的渠道不再局限于紙質媒介和言傳身教,更多來自于電子資源及網絡媒介,教師和學生獲取知識的途徑及資源差異越來越小,在知識量、閱歷等方面縮小了師生間的差距,師生之間傳統的信息不對稱差距逐步縮小,導致教師在知識積淀上沒有了絕對優勢。

與此同時,逐步深入青年學生內心的自由、平等觀念對中國傳統的尊師重道思想帶來了不小的沖擊。在當今開放的網絡環境下,針對新興時代的學生,傳統習俗中的師長觀念由于知識獲取渠道的平等化而缺乏強有力的現實支撐,教師的身份權威性和知識權威性都受到了不同程度的質疑,繼續使用“填鴨式”“訓導式”教學方式,將會事倍功半。

因此,針對新興學科,一線教師需要進行教學理念上的修正,特別是教師應順應培養對象的整體特點,基于自由和平等的觀念進行自我定位,以交流討論式代替居高臨下布施式的教學觀念,充分與學生打成一片,以便更好地調動學生的思維,引導學生進行主動思考和主動學習。

2教學素材的改進與提高

當今時代是知識爆炸的時代,科學技術日新月異,新知識、新成果層出不窮,特別是智能科學與技術這一前沿學科,正在向理論創新和大規模實際應用發展,新理論、新方法不斷被提出并驗證,新模型、新實例、新應用不斷產出。

“教學素材對教育理念的滲透發揮著重要作用,它已經成為促進或阻礙教學模式轉變的活躍而關鍵的要素。隨著新時代知識的快速更新換代和知識面的不斷拓寬,教學素材是否優秀的標準不僅僅是包含多少知識,更重要的是包含多少最新的知識;不僅僅是傳遞解決問題的方法,更重要的是傳遞超前、新穎的解決問題的方法。

當今學生知識涉獵面廣,現有的網絡環境也為他們提供了很好的平臺,如果他們已經獲取的知識及應用的先進程度遠遠超過課本素材羅列的知識,將會極大地削弱他們對本學科的興趣,進而影響課堂教學效果。

此外,作為智能科學與技術這一前沿學科的教學素材,必須體現出時代性、開放性、多元性與全面性。因此,教學過程中所采用素材的改進和提高,應該向著不斷更新、與時俱進的方向靠攏,教師應該不斷將最新理論、最新方法、最新應用融合于一線基礎教學過程中,使學生在學習過程中始終緊跟前沿技術的發展,在未來工作中能更快、更好地融入行業中。

3教學方式的轉變

目前,學生群體主要為90后,高校即將迎來00后,他們成長過程中的家庭環境和社會環境與早期學生相比更為平等和寬松,他們的學習需求也由目標導向型逐步演化為興趣導向型。因此,如何激發學生的興趣,進而以興趣為基礎激發學生自主學習的動力,將是教學效果事半功倍的途徑。

青年學生正處于思維高度活躍的階段,他們往往對新興成果和前沿熱點有著超過常人的關注,如何巧妙而有效地將這種關注轉化為針對本學科的興趣,進而反向推導出基礎理論并讓學生消化、吸收,就成為一線教師面臨的重要問題。

從1997年國際象棋大師卡斯帕羅夫和電腦“深藍”第一次人機大戰開始,智能科學與技術迅速躋身科技前沿熱點,且經久不衰。2016年3月,Alpha Go再次燃起人工智能之火,經過媒體的推波助瀾,成為社會關注的焦點,大大增強了智能科學與技術的關注度。而青年學生作為最容易追趕潮流的群體,自然對此類熱點趨之若鶩。

作為智能科學與技術學科的一線教師,應把握和利用社會輿論的潮流以及學生心理的律動,及時以此熱點為突破口,吸引學生的興趣,引起共鳴,進而進行反向推導相關基礎理論并加以詳解。

例如,教師以Alpha Go為課堂開篇討論,引導學生思考,并說明Alpha Go的核心原理是深度學習。在這個實例中,Alpha Go模擬人類下棋的推理與思考過程,其中推理過程通過搜索樹來搜索可能的棋局,思考過程通過兩個深度神經網絡確定可能的搜索方向和評估棋局,這兩個神經網絡包括:

(1)落子選擇器(policy network),這是一種深度卷積神經網絡,主要通過當前棋盤布局預測下一步走棋位置的概率。

(2)棋局評估器(value network),與落子選擇器具有相似的結構,主要在給定棋子位置的情況下,輸出雙方棋手獲勝的可能性,從而對棋局進行評估。

如此,教師可以帶領學生了解搜索樹及搜索算法,也可以從深度卷積神經網絡到普通神經網絡,講解神經網絡的基礎知識,分析神經網絡到深度學習的發展過程。這樣就可以將學生對Alpha Go本身的興趣,巧妙地引導到對神經網絡等基礎概念和原理方面,以此強化學生對基礎知識的掌握。

同時,開放式的考核方式也是促進學生創新、使教學方法適應新時代的一種有效途徑。對于本學科感興趣的話題,教師應鼓勵學生多談自己的思路和想法;對于開放式課題,應給學生提供展示的舞臺,鼓勵學生分享自己在查找資料、解決難點、編程過程中的心得體會,充分調動學生的積極性和主動性;將這些考核成績按比例計入學生課業總成績中,充分肯定學生的創新能力。

4結語

教學成效是設計和構建教學方式的基本出發點,教師應該結合學生需求從學習成效、教學技巧、教學內容上總體把握教學方式閣,采用不同于傳統講授方式的逆向教學(如圖1所示),使其滿足和順應新一代青年學生的心理認同需求和學習需求,將新理論、新應用不斷融入基礎教學中,達到更好的教學效果。

篇8

關鍵詞:車牌;識別;專利;分析

引言

車牌識別技術[1-2]是指自動提取受監控區域車輛的車牌信息并進行處理的技術,其通過運用圖像處理、計算機視覺、模式識別等技術,對攝像頭捕獲的車輛照片或視頻進行分析,進而自動識別車輛的車牌號碼。車牌識別技術可應用于停車場自動收費管理、道路監控等領域,在城市交通管理中發揮了重要作用。

1 中國專利申請情況分析

以CNABS專利數據庫中的檢索結果為分析樣本,介紹車牌識別技術的中國專利申請量趨勢以及重要申請人的狀況。

1.1 第一階段(2005年及之前)

在這階段,申請量極少且申請人也極少,且針對的環境較為簡單,處于技術的萌芽階段,其中,專利CN1529276,通過車牌定位、字符分割和分類識別完成機動車牌號自動識別,其實現過程較為簡單,具體細節描述較少。

1.2 第二階段(2006年-2010年)

在這階段的申請量比上一階段有所增加,而且申請人數量相較之前也有增長,其中來自高校的申請量明顯增加,反映出了高校研究者開始更加注重對研究成果的保護,這一階段的專利所針對的環境場景更為復雜,識別準確率得到提高,對車牌定位、字符分割、字符識別等關鍵技術的研究更為深入。

1.3 第三階段(2011年及以后)

在2011年之后車牌識別技術的專利申請量呈現快速增長,這一階段車牌識別技術得到了更進一步的豐富,涉及的關鍵技術的解決途徑也呈現出多樣性,檢測效率和精度也得到進一步提高,其中,專利CN104035954A,涉及一種基于Hadoop的套牌車識別方法,將云計算應用于車牌識別,使得與傳統環境下不經過優化的方法相比具有^高的運行效率和加速比,可以有效地識別套牌車。

圖2示出了中國重要申請人分布情況,申請量分布前十的申請人包括:電子科技大學、深圳市捷順科技實業股份有限公司(捷順科技)、浙江宇視科技有限公司(宇視科技)、信幀電子技術(北京)有限公司(信幀電子)、中國科學院自動化研究所(自動化研究所)、安徽清新互聯信息科技有限公司(清新互聯)、青島海信網絡科技股份有限公司(海信網絡)、浙江工業大學、四川川大智勝軟件股份有限公司(川大智勝)、上海高德威智能交通系統有限公司(高德威智能交通),從圖2中可以看出,不同申請人的申請量差距不是很大,幾乎保持在一個比較持平的狀態。

電子科技大學在車牌識別技術的專利申請中,CN 101064011A提出一種基于小波變換的復雜背景中的車牌提取方法,可大大提高對晴天、雨天、霧天、白天及夜晚等環境的通用性和適用性,實現車牌的精確定位并提高車牌提取的準確度;CN 103455815A提出一種復雜場景下的自適應車牌字符分割方法,能快速、準確地搜索2、3字符間隔位置,實現自適應調整分割參數,使車牌字符分割穩定可靠,在復雜的環境中魯棒性強,防止噪聲干擾;CN 105005757A提出一種基于Grassmann流行的車牌字符識別方法,最大限度地利用了已獲得的車牌字符信息以及同類字符之間的相互關系,對于車牌字符的成像質量要求更低,應用于復雜的環境中具有很好的魯棒性和準確性。

2 關鍵技術分析

一個完整的車牌定位與識別系統,其前端包括圖像采集和傳輸系統,末端還需要與數據庫相連接。從定位到識別的核心算法上,主要包括圖像預處理、車牌定位、字符分割和字符識別四大部分[3]。

圖像預處理,是指通過對攝像頭捕獲的彩色圖像進行預處理。常用的預處理方法包括圖像灰度化、圖像二值化、邊緣檢測等。

車牌定位,是指在經預處理后的車輛圖像中,定位出車輛的車牌所在位置。常用的車牌定位方法包括基于紋理分析的方法、基于數學形態學的方法、基于邊緣檢測的方法、基于小波變換的方法和基于神經網絡的方法等。CN 104298976A提出一種基于卷積神經網絡的車牌檢測方法,利用卷積神經網絡完整車牌識別模型對車牌粗選區域進行篩選,獲取車牌最終候選區域。

字符分割,是指將定位出的車牌區域圖像分割成單個的字符圖像。常用的字符分割方法包括基于輪廓的方法、基于投影的方法、基于模板匹配的方法和基于連通區域的方法等。CN 104408454A提出一種基于彈性模板匹配算法的車牌字符分割方法,基于彈性模板,通過插空進行模板序列形狀的彈性調整,將車牌圖片與理想模板進行匹配,獲得全局最優匹配,確定字符位置,將分割算法作用于投影序列,實現對車牌字符的分割。

字符識別,是指對字符分割之后的單個字符圖像進行識別,進而得到車輛的車牌號碼。常用的車牌字符識別方法包括基于字符結構特征的識別方法、基于模板匹配的識別方法、基于神經網絡的識別方法、基于模糊理論的模式識別方法和基于支持向量機分類識別方法等。CN 105975968A提出一種基于Caffe框架的深度學習車牌字符識別方法,以基于Caffe架構的深度學習為基礎,解決了現有的車牌字符識別方法中對傾斜、斷裂、相近字符識別精度不高的問題,大大提高了對于車牌字符的識別精度。

3 結束語

本文以車牌識別相關專利文獻為樣本,分析統計了該技術中國專利申請現狀,并對車牌識別技術的關鍵技術進行簡單分析。在經歷了從無到有、從萌芽到飛速發展的階段之后,車牌識別技術慢慢走向成熟,越來越多的企業和高校在車牌識別的研究上投入了大量的精力,也獲得了豐碩的研究成果。

參考文獻

[1]尹旭.汽車牌照定位研究綜述[J].電腦知識與技術,2010,6(14):3729-3730.

篇9

    雖然目前公眾媒體將無線通信炒的很熱,但這個領域從1897年馬可尼成功演示無線電波開始,已經有超過一百年的。到1901年就實現了跨大西洋的無線接收,表明無線通信技術曾經有過一段快速發展時期。在之后的幾十年中,眾多的無線通信系統生生滅滅。

    20世紀80年代以來,全球范圍內移動無線通信得到了前所未有的發展,與第三代移動通信系統(3g)相比,未來移動通信系統的目標是,能在任何時間、任何地點、向任何人提供快速可靠的通信服務。因此,未來無線移動通信系統應具有高的數據傳輸速度、高的頻譜利用率、低功耗、靈活的業務支撐能力等。但無線通信是基于電磁波在自由空間的傳播來實現傳輸的。信號在無線信道中傳輸時,無線頻率資源受限、傳輸衰減、多徑傳播引起的頻域選擇性衰落、多普勒頻移引起的時間選擇性衰落以及角度擴展引起的空間選擇性衰落等都使得無線鏈路的傳輸性能差。和有線通信相比,無線通信主要由兩個新的問題。一是通信行道經常是隨時間變化的,二是多個用戶之間常常存在干擾。無線通信技術還需要克服時變性和干擾。由于這個原因,無線通信中的信道建模以及調制編碼方式都有所不同。

    1.無線數字通信中盲源分離技術分析

    盲源分離(bss:blind source separation),是信號處理中一個傳統而又極具挑戰性的問題,bss指僅從若干觀測到的混合信號中恢復出無法直接觀測的各個原始信號的過程,這里的“盲”,指源信號不可測,混合系統特性事先未知這兩個方面。在研究和工程應用中,很多觀測信號都可以看成是多個源信號的混合,所謂“雞尾酒會”問題就是個典型的例子。其中獨立分量分析ica(independent component analysis)是一種盲源信號分離方法,它已成為陣列信號處理和數據分析的有力工具,而bss比ica適用范圍更寬。目前國內對盲信號分離問題的研究,在理論和應用方面取得了很大的進步,但是還有很多的問題有待進一步研究和解決。盲源分離是指在信號的理論模型和源信號無法精確獲知的情況下,如何從混迭信號(觀測信號)中分離出各源信號的過程。盲源分離和盲辨識是盲信號處理的兩大類型。盲源分離的目的是求得源信號的最佳估計,盲辨識的目的是求得傳輸通道混合矩陣。盲源信號分離是一種功能強大的信號處理方法,在醫學信號處理,陣列信號處理,語音信號識別,圖像處理及移動通信等領域得到了廣泛的應用。

    根據源信號在傳輸信道中的混合方式不同,盲源分離算法分為以下三種模型:線性瞬時混合模型、線性卷積混合模型以及非線性混合模型。

    1.1 線性瞬時混合盲源分離

    線性瞬時混合盲源分離技術是一項產生、研究最早,最為簡單,理論較為完善,算法種類多的一種盲源分離技術,該技術的分離效果、分離性能會受到信噪比的影響。盲源分離理論是由雞尾酒會效應而被人們提出的,雞尾酒會效應指的是雞尾酒會上,有聲、談話聲、腳步 聲、酒杯餐具的碰撞聲等,當某人的注意集中于欣賞音樂或別人的談話,對周圍的嘈雜聲音充耳不聞時,若在另一處有人提到他的名字,他會立即有所反應,或者朝 說話人望去,或者注意說話人下面說的話等。該效應實際上是聽覺系統的一種適應能力。當盲源分離理論提出后很快就形成了線性瞬時混合模型。線性瞬時混合盲源分離技術是對線性無記憶系統的反應,它是將n個源信號在線性瞬時取值混合后,由多個傳感器進行接收的分離模型。

    20世紀八、九十年代是盲源技術迅猛發展的時期,在1986年由法國和美國學者共同完了將兩個相互獨立的源信號進行混合后實現盲源分離的工作,這一工作的成功開啟了盲源分離技術的發展和完善。在隨后的數十年里對盲源技術的研究和創新不斷加深,在基礎理論的下不斷有新的算法被提出和運用,但先前的算法不能夠完成對兩個以上源信號的分離;之后在1991年,法國學者首次將神經網絡技術應用到盲源分離問題當中,為盲源分離提出了一個比較完整的框架。到了1995年在神經網絡技術基礎上盲源分離技術有了突破性的進展,一種最大化的隨機梯度學習算法可以做到同時分辨出10人的語音,大大推動了盲源分離技術的發展進程。

    1.2 線性卷積混合盲源分離

    相比瞬時混合盲源分離模型來說,卷積混合盲源分離模型更加復雜。在線性瞬時混合盲源分離技術不斷發展應用的同時,應用中也有無法準確估計源信號的問題出現。常見的是在通信系統中的問題,通信系統中由于移動客戶在使用過程中具有移動性,移動用戶周圍散射體會發生相對運動,或是交通工具發生的運動都會使得源信號在通信環境中出現時間延遲的現象,同時還造成信號疊加,產生多徑傳輸。正是因為這樣問題的出現,使得觀測信號成為源信號與系統沖激響應的卷積,所以研究學者將信道環境抽象成為線性卷積混合盲源分離模型。線性卷積混合盲源分離模型按照其信號處理空間域的不同可分為時域、頻域和子空間方法。

    1.3 非線性混合盲源分離

    非線性混合盲源分離技術是盲源分離技術中發展、研究最晚的一項,許多理論和算法都還不算成熟和完善。在衛星移動通信系統中或是麥克風錄音時,都會由于乘性噪聲、放大器飽和等因素的影響造成非線性失真。為此,就要考慮非線性混合盲源分離模型。非線性混合模型按照混合形式的不同可分為交叉非線性混合、卷積后非線性混合和線性后非線性混合模型三種類型。在最近幾年里非線性混合盲源分離技術受到社會各界的廣泛關注,特別是后非線性混合模型。目前后非線性混合盲源分離算法中主要有參數化方法、非參數化方法、高斯化方法來抵消和補償非線性特征。

    2.無線通信技術中的盲源分離技術

    在無線通信系統中通信信號的信號特性參數復雜多變,實現盲源分離算法主要要依據高階累積量和峭度兩類參數。如圖一所示,這是幾個常見的通信信號高階累積量。

    在所有的通信系統中,接收設備處總是會出現白色或是有色的高斯噪聲,以高階累積量為準則的盲源分離技術在處理這一問題時穩定性較強,更重要的是對不可忽略的加性高斯白噪聲分離算法同時適用。因此,由高階累積量為準則的盲源分離算法在通信系統中優勢明顯。

    分離的另一個判據就是峭度,它是反映某個信號概率密度函數分布情況與高斯分布的偏離程度的函數。峭度是由信號的高階累積量定義而來的,是度量信號概率密度分布非高斯性大小的量值。

篇10

【關鍵詞】照相軟件 人臉識別技術 計算機

人臉識別作為一項現代化科技技術,具有極大的發展空間。1964年,人臉識別(AFR)這一領域逐漸出現在人們的視野里,至于1991年至1997年,若干具有代表性的人臉識別算法誕生于世,到如今,以支持向量機為代表的統計學習理論被應用到了人臉識別中來。前人的側重點在于對其算法的延伸探究,但就筆者而言,存在一定程度上專業知識的限制,因而根據自身的知識儲備與探究能力,將人臉識別技術這一寬泛概念的探討縮小至相對更貼近生活,且較為容易理解與研究的一個主題――對于照相機軟件中人臉識別技術的探究,并由此展開對計算機人臉識別的部分性探究。

1 對于人臉識別技術的初步了解

科幻性質的故事往往以其并不符合實際的奇幻情節,模糊得描繪了現實世界未來的發展藍圖。這里不得不提及一部具有啟發意義的電影――《生化危機》,電影中追蹤主角行蹤的衛星定位人臉識別技術,是否未來也將存在于我們的現實社會當中?由此,便聯想到生活中照相軟件的人臉識別是否也是通過相似的原理而執行的。

關于人臉識別,其本質上隸屬于生物特征識別的一支。其余包含指紋識別,虹膜識別,DNA識別等技術。當今最為廣泛運用的是指紋識別,但隨之而來產生的是一定的安全性問題。例如去年熱門的高考替考話題,指紋貼的出現使指紋識別的安全性受到質疑。而人臉識別仍處于一個不完全成熟的發展階段,就目前現狀來說,其所具有的不可復制性、自然性、不可察覺性,使其安全性與實用性都處于相對較高的水平。但同樣,其技術難度也呈正比例增長。

通過對與計算機信息科技的學習,能夠得出這樣一個總結性結論:“人臉識別是通過計算機視覺的一些算法所實現的?!?/p>

前人對從不斷更新的研究中得出,人臉識別的基本算法有四種:

(1)基于人臉特征點的識別算法(Feature-based recognition algorithms)。

(2)基于整幅人臉圖像的識別算法(Appearance-based recognition algorithms)。

(3)基于模板的識別算法(Template-based recognition algorithms)。

(4)利用神經網絡進行識別的算法(Recognition algorithms using neural network)。

當然,如今也早已存在許多其他的的算法能夠支持人臉識別技術的實現。而對于該項技術的應用的范圍也在逐漸擴大,門禁考勤系統、住宅安全管理、電子身份等等,都將在很大程度上的得益于其的不斷發展。

讓我們回到主題:照相機的人臉跟蹤究竟是如何實現的呢?圍繞這一問題,由淺及深,筆者將本文中的探究內容主要分為以下三個部分:

(1)圖像在計算機內部的存儲方式。

(2)計算機如何區分出物體與其所在背景。

(3)計算機如何定位人臉并從而實現識別功能。(注:由于照相軟件只是作為一個對于人臉識別問題的切入點,單單深究照相軟件會帶來一定的局限性,因此二、三兩點將跳過作為載體的照相軟件,直接對于照相機功能背后的原理作進一步探究。)

1.1 圖像在計算機內部的儲存方式

計算機通過往往通過bitmap的形式來儲存圖像,也就是像素矩陣。

從結構上講,計算機中儲存的圖像一把可以分為兩大類,即矢量圖和位圖。矢量圖通過數學公式計算獲得,優點在于不會失真,但其最大的缺點是難以表現色彩層次豐富的逼真圖像效果。而位圖的基本思想,則是把一幅圖像按照行列進行分割,所獲得的點成為像素。相機所拍攝獲得的照片便是以位圖的形式儲存的。每一幅圖像均是由無數像素組成,而每一個像素對應顯存中1、8、16或24位二進制數來表示顏色信息。位數決定了圖像所含的最大顏色數,位數越多,圖像的色彩就越豐富。

1.2 計算機如何區分出物體與其所在背景

大致的過程可以由圖1所知,用相對容易理解的話來解釋,計算機對于區分物體與其所在背景,首先是通過對要是別的物體提取表面特征,然后再對真實的照片提取表面特征,最終在進行匹配,配合相應的算法,這樣,計算機便可以區分出物體與其所在背景。

由此所延伸的科目是計算機視覺。

正如定義所提到:計算機視覺是一門關于如何運用照相機和計算機來獲取我們所需的,被拍攝對象的數據與信息的學問。

通過這門科目,我們能夠做到使用計算機來處理圖像,并區分出目的對象。形象地說,在這門科目的輔助之下,計算機能夠成為人類的第二雙眼睛,對目標進行識別、跟蹤和測量。

“One picture is worth ten thousand words.”圖像的處理,將為人類提供巨大的便捷。

大致羅列出其處理所進行的步驟,分別是:圖像獲取、特征提取、檢測分割、高級處理。

1.3 計算機如何定位人臉并從而實現識別功能

關于人臉的定位與識別,在很大一定程度上與區別物體與背景的技術存在著相似之處。但是人臉的定位與識別,又是更高于目標對象的識別的。這正是算法的不停更新與發展所帶來的科技發展的結果。

目前比較流行的Cascade Classifier(Opencv中做人臉檢測的時候的一個級聯分類器)效果還是比較好的,正臉檢測到的成功率能達到90%以上。

此外,在人臉局部區域特征提取時,一種叫做CNN(Convolutional Neural Network)卷積神經網絡技術的運用――使用提取特征的filter對像素點進行幾層處理,也為識別帶來一定的便利。CNN運用到了深度學習,因此這里將拓展以下有關deep learning的概念:

deep learning的概念源于人工神經網絡的研究。其三大框架為:CNN(Convolutional Neural Network,卷積神經網絡),DBN(Deep Belief Network,深度置信網絡),AE(AutoEncoder,自動編碼機)。而目前在CV(Computer Vision的縮寫,指計算機視覺)領域應用最廣的是CNN。到近來也有很多人嘗試用deep learning的方法來實現人臉識別,其與先前所提到的計算機區分物體和背景的原理也是相似的。

2 結論

回到最初的問題:照相機的人臉跟蹤是如何實現的?綜上所述,可以獲得的結論是:照相機的人臉跟蹤是通過計算機視覺的一些算法實現的。但這些算法在技術方面人仍然面臨著一些難點,例如,在特征識別時,外界客觀因素,有如,光線、著裝遮擋、目標對象的姿態、臉型、樣本缺乏等等尚未解決的問題。這些都使人臉識別技術尚有巨大的可發展空間。就像前段時間由推出的How Old do I Look線上臉部偵測服務,曾一度掀起熱潮,可見,人們對于人臉識別技術的期望也是很高的。

那么,未來的人臉識別技術到底能夠發展到何種程度呢?香港中文大學教授湯曉鷗、王曉剛及其研究團隊曾在2014年6月宣布,他們研發的DeepID人臉識別技術的準確率超過99%,比肉眼識別更加精準。相信未來,計算機人臉識別技術將與我們共同成長,逐漸成熟與完善。畢業于UC Berkeley的博士賈揚清,創造了Caffe――全稱Convolutional Architecture for Fast Feature Embedding,一個清晰而高效的深度學習框架,具有上手快、速度快、模塊化、開放性、社區好等優點。如此不斷迅捷發展的計算機技術,在這個數字化的時代,正是對未來發展很好的導向。

參考文獻

[1]韋鳳年.怎樣寫科技論文[J].河南水利,2006(09).

[2]董琳,趙懷勛.人臉識別技術的研究現狀與展望[J].China Academic Journal Electronic Publishing House,2011,10.

作者簡介

孫文倩(1998-),上海市人?,F在上海市洋涇中學高中在讀。