抗震設計論文范文
時間:2023-03-20 06:27:12
導語:如何才能寫好一篇抗震設計論文,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。
篇1
論文摘要:本文從抗震的角度探討建筑的體型,建筑平面布置和豎向布置、規范中設計限值的控制、屋頂建筑等設計問題。
建筑設計是否考慮抗震要求,從總體上起著直接的控制主導作用。結構設計很難對建筑設計有較大的修改,建筑設計定了,結構設計原則上只能是服從于建筑設計的要求。如果建筑師能在建筑方案、初步設計階段中較好地考慮抗震的要求,則結構工程師就可以對結構構件系統進行合理的布置,建筑結構的質量和剛度分布以及相應產生的地震作用和結構受力與變形比較均勻協調,使建筑結構的抗震性能和抗震承載力得到較大的改善和提高;如果建筑師提供的建筑設計沒有很好地考慮抗震要求,那就會給結構的抗震設計帶來較多困難,使結構的抗震布置和設計受到建筑布置的限制,甚至造成設計的不合理。有時為了提高結構構件的抗震承載力,不得不增大構件的截面或配筋用量,造成不必要的投資浪費。由此可見,建筑
設計是否考慮抗震要求,對整個建筑起著很重要的作用。因此,我們在建筑抗震設計過程別要注重以下幾個問題。
一、建筑體型設計問題
建筑體型包括建筑的平面形狀和主體的空間形狀的設計。震害表明,許多平面形狀復雜,如平面上的外凸和凹進、側翼的過多伸懸、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。唐山地震就有不少這樣的震例。平面形狀簡單規則的建筑在地震中未出現較重的破壞,有的甚至保持完好無損。沿高度立體空間形狀上的復雜和不規則在地震時都會造成震害。特別是在建筑結構剛度發生突變的部位更易產生破壞。因此在建筑體型的設計中,應盡可能地使平面和空間的形狀簡潔、規則;在平面形狀上,矩形、圓形、扇形、方形等對抗震來說都是較好的體型。盡可能少做外凸和內凹的體型,盡可能少做不對稱的側翼和過長的伸翼。在體型布置上盡可能使建筑結構的質量和剛度比較均勻地分布,避免產生因體型不對稱導致質量與剛度不對稱的扭轉反應。
二、建筑平面布置設計問題
建筑物的平面布置在建筑設計中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距離、內墻的布置、空間活動面積的大小、通道和樓梯的位置、電梯井的布置、房間的數量和布置等,都要在建筑的平面布置圖上明確下來。而且,由于建筑使用功能不同,每個樓層的布置有可能差異很大,建筑平面上的墻體,包括填充墻、內隔墻、有相應強度和剛度的非承重內隔墻等等布置不對稱,墻體與柱子分布的不對稱、不協調,使建筑物在地震時產生扭轉地震作用,對抗震很不利。有的建筑物,其剛度很大的電梯井筒被布置在建筑平面的角部或是平面的一側,結果在地震中造成靠電梯一側建筑物的嚴重破壞。這是因為電梯井筒具有極大的抗側力剛度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一側的墻體很多,而另一側的墻體稀少,這就造成平面上剛度分布的很不對稱,質量分布也偏心,使結構的受力和變形不協調,導致扭轉地震作用效應,帶來局部墻面的破壞。有的建筑物,如底層為商場的臨街建筑,臨街一側往往不設墻體,而其另一側則有剛度很大的墻體封閉,兩側在剛度上相差很多,也將在地震時引起扭轉地震作用,對抗震不利。還有的建筑平面布置上,經常出現內隔墻不對齊或中斷,使剛度發生突變和地震力傳遞受阻,對抗震也帶來不利,客易引起結構的局部破壞。建筑平面布置設計對建筑抗震關系很大,從概念上要解決的一個核心問題是:建筑平面布置設計上要盡可能做到使結構的質量和剛度分布均勻,對稱協調,避免突變,防止產生扭轉效應。在建筑平面布置的總體設計上要盡可能為結構抗側力構件的合理布置創造條件,使建筑使用功能要求與建筑結構抗震要求融合成一體,充分發揮建筑設計在建筑抗震中的作用。
三、建筑豎向布置設計問題
建筑的豎向布置設計問題在建筑設計中主要反映在建筑沿高度(樓層)結構的質量和剛度分布設計上。無論是單層或多層,還是高層建筑或超高建筑,這個問題是比較突出的。存在的這個主要問題是,由于建筑使用功能的不同要求,如底層或下面幾層是商場、購物中心,建筑上要求是大柱距、大空間;而上面的樓層則是開間較大的寫字樓或布置多樣化的公寓樓,低層設柱、墻很少,而上面則是以墻為主,柱很少。有的建筑在布置上還設有面積很大的公用天井大廳,在不同樓層上設有大會議廳、展廳、報告廳等,建筑使用功能的不同,形成了建筑物沿高度分布的質量和剛度的嚴重不均勻、不協調。突出的問題是沿上下相鄰樓層的質量和剛度相差過大,形成突變[3]。在剛度最差的樓層形成對抗震極為不利的抗震承載力不足和變形很大的薄弱層。這是在建筑設計中必須高度重視的問題。在實際設計中,在建筑使用功能不同的情況下,很可能出現上下相鄰樓層的墻體不對齊,柱子不對齊,墻體不連續,不到底;上層墻多,下層墻少;上層有柱,下層無柱等,使地震力的傳遞受阻或不通;抗震用的剪力墻設置不能直通到底層、剪力墻布置嚴重不對稱或數量太少。所有這些布置都將給建筑物帶來地震作用分布的不均勻、不對稱和對建筑物很不利的扭轉作用。多次大震害表明,建筑物豎向樓層剛度的過大變化,給建筑物造成很多破壞,甚至是整個樓層的倒塌。在1995年的日本阪神大地震中,有多棟鋼筋混凝土高層建筑發生了中間樓層的整體坐落倒塌破壞。因此,盡可能使剪力墻布置比較均勻并使其能沿豎向貫通到建筑物底部,不宜中斷或不到底。盡量避免其某樓層剛度過少,盡量避免產生地震時的鈕轉效應。
四、建筑上應滿足的設計限值控制問題
根據大量震害的經驗總結,現行《建筑抗震設計規范》(GBJll-89)對房屋建筑在建筑設計中應考慮的一些抗震要求的限值控制提出了規定。這些規定,建筑設計應予遵守:一是房屋的建筑總高度和層數;二是對房屋抗震橫墻問題和局部墻體尺寸的限值控制。
五、屋頂建筑的抗震設計問題
在高層和超高層建筑設計中,屋頂建筑是一個重要的設計部分。從近幾年對一些高層建筑抗震設計審查結果來看,屋頂建筑存在的主要問題,一是過高,二是過重。這樣的屋頂建筑加大了變形,也加大了地震作用。對屋頂建筑自身和其下的建筑物的抗震都不利。屋頂建筑的重心與下部建筑的重心不在一條線上,且前者的抗側力墻與其下樓層的抗側力墻體上下不連續時,更會帶來地震的扭轉作用,對建筑物抗震更不利。為此,在屋頂建筑設計中,宜盡量降低其高度。采用高強輕質的建筑材料和剛度分布比較均勻、地震作用沿結構的傳遞比較通暢,使屋頂重心與其下部建筑物的重心盡可能一致;當屋頂建筑較高時,要使其具有較好的抗震定性,使屋頂建筑的地震作用及其變形較小,而且不發生扭轉地震作用。
六、結束語
總的來說,建筑設計是建筑杭震設計的一個重要方面,建筑設計與建筑
抗震設計有著密切關系。它對建筑抗震起著重要的基礎作用。一個優良的建筑抗震設計,必須是在建筑設計與結構設計相互配合協作共同考慮抗震的設計基礎上完成。為此,要充分重視建筑設計在建筑抗震設計中的重要性,在建筑抗震設計中更好地發揮建筑設計應有的作用。
參考文獻:
[1]《建筑抗震設計規范》(CBJll-89),中國建筑工業出版社,2005。
[2]包世華、方鄂華,《高層建筑結構設計》,清華大學出版社,2003。
篇2
1.1合理的選址在建筑結構抗震水平設計中,合理的選址是最基本的先決條件。為了保證選址的正確、合理性,我國政府部門已經出臺了《中華人民共和國減災抗震法》等法律條文,其中明確規定“對于有可能發生的重大建設性工程以及次生災害進行嚴格的地震安全指標評價,按照地震安全評價結果,明確相關建筑物的抗震設防要求,并對其進行分別設防”。建筑結構的設防標準根據其實際質量可分為四個標準,其中:甲類:地震時間或大型建筑工程可能發生的次生建筑類災害;乙類:地震中不能中斷使用功能,且必須要逐步恢復的建筑類型;丙類:除甲、乙兩類建筑外的其他普通建筑類型;丁類:抗震級別相對較低的建筑。根據對相關法規的分析,在進行建筑物結構設計時,必須要選擇對建筑有利的場地,避免在不利地段建設大型民用建筑,以防止地震破壞隱患的出現。對于一些軟基地段,也必須要進行充分的處理,才能夠進行合適的建筑設計。另外對于地震可能引起的次生災害問題,也必須要予以正確的處理,進一步保證選址的正確性。
1.2科學的設計當地震發生時,不同的建筑結構所受到的地震影響是不同的,為了最大限度降低地震災害的影響,建筑設計人員在抗震設計環節中,要根據當地地段的實際情況來進行建筑結構的選擇。目前,我國常用的鵝建筑結構可以分為“鋼筋混凝土結構”、“砌體結構”、“鋼混結構”和“鋼結構”四種類型。通過對四種結構的比較分析得出,鋼筋混凝土結構的抗震能力相對較強,因為其自身具有較好的柔韌性,所以當建筑物因地震災害而出現應力變形時,鋼筋混凝土結構能夠依靠自身良好的承載力對其進行一定程度的控制,這是其它三種結構所不具備的優勢。近年來,高層建筑建設的增多,大大增大了其在地震災害影響下的水平位移和抗側移剛度,這在無形之中就加大了地震災害的影響,為了避免地震災害影響程度的增大,在設計和審核高層建筑抗震設計時,必須要考慮結構的側移度。
1.3堅實的質量地震作為破壞性超強的自然災害,想要最大限度降低其對建筑的破壞,保證建筑設計堅實的質量是最基本的防護措施。相比較而言,我國建筑設計水平發展較為緩慢,在地震設計方面也存在不夠合理的情況,這使得很多建筑結構都出現了地震安全隱患,過大的自身重量也加大了地震危害。為了保證建筑結構抗震水平,必須要在建筑抗震設計環節中科學的運用抗震理論,根據相關設計原則,利用有效措施來提高建筑結構的可靠性與安全性。
2實現建筑結構抗震水平設計的措施
2.1基礎性防震措施應用基礎性防震措施根據建筑的結構的不同位置有著不同的措施:(1)地基隔震。地基隔震是在建筑地基與土層之間設置緩沖層,以便在地震發生時減小建筑與土層之間的震動碰撞,實現對震能的有效吸收和反射作用,減小地震對建筑物的破壞。目前,我國最常使用的地基隔層為瀝青原料隔震層。(2)基礎隔震。基礎隔震是整個建筑結構抗震設計中的關鍵,想要降低地震對建筑物的破壞,就必須要做好基礎隔震措施。在對建筑基礎采取抗震措施時,為了減小地震對上部結構的破壞,需要在建筑物的上部結構和基礎位置接觸處設置隔震層,防止地震力由地基處向上部結構傳播,降低地震對建筑上部結構的破壞。基礎抗震裝置一般采用混合隔震裝置、基底滑移隔震裝置和夾層橡膠隔震裝置等。(3)間層隔震。間層隔震是為了吸收地震的沖擊余力而設置的,間層隔震的有效設置能夠對震力進行再次削減,以達到降低地震對建筑的破壞作用。間層隔震一般都安裝在原始結構層上,其實我國最早使用的的抗震措施,具有施工操作簡單的優勢。(4)懸掛隔震。懸掛隔震是通過懸掛的方式,將建筑物全部或部分結構脫離地面,從而在地震出現時,降低地面震動與建筑物之間的震力作用。目前,此種抗震措施多用于大型鋼結構建筑當中,收到了較為不錯的抗震效果。
2.2機敏減震支撐體系機敏減震支撐體系是集成現代科技技術的防震系統,其利用活塞運動的原理,對建筑結構進行設計。在地震災害發生時,保證建筑結構中的內、外鋼能夠通過不斷的滑動來消減地震的破壞力,減輕震力破壞和消耗地震作用力的傳導。目前,這項技術還在不斷的研究和完善當中,相信其很快就能夠實現有效的應用,為建筑抗震設計水平的提升做出貢獻。
2.3效能減震技術應用效能減震是實現對地震所產生動能的消耗,來減輕地震能的傳導大小,從而降低其對建筑物的破壞程度。目前,在此技術方面一般采用消能器和阻尼器,兩種器械都能夠實現地震能量的有效消耗和吸收,減小震力對建筑主體的破壞,以達到對建筑主體結構安全、穩性定的保護。目前,效能減震技術在我國建筑防震設計中得到了有效的應用,其在新建筑的防震設計和舊建筑的抗震加固方面,都起到了良好的效果。
3總結
篇3
我國現行的結構抗震設計,主要是以承載力為基礎的設計,即用線彈性方法計算結構在小震作用下的內力、位移;用組合的內力驗算構件截面,使結構具有一定的承載力;位移限值主要是使用階段的要求,也是為了保護非結構構件;結構的延性和耗能能力是通過構造措施獲得的。結構的計算分析方法基本上可以分為彈性方法和彈塑性方法。當前在建筑結構抗震設計和研究中廣泛地采用底部剪力法和振型分解反應譜法等。這些方法沒有考慮結構屈服之后的內力重分布。實際上結構在強震作用下往往處于非線性工作狀態,彈性分析理論和設計方法不能精確地反映強震作用下結構的工作特性,讓結構在強震作用下處在彈性工作狀態下工作將造成材料的巨大浪費,是不經濟的。隨著人們認識的提高,結構的地震反應分析設計方法經過了兩個文獻的轉變:(1)靜力分析方法到動力分析方法的轉變:(2)從線性分析方法到非線性分析方法的轉變。其中動力分析方法就經過了從振型分解反應譜法到時程分析法、從線性分析到非線性分析、從確定性分析到非確定性分析的三個大的轉變。作為一種簡化實用近似方法,目前的推覆分析方法(Push—overAnalysis)受到眾多學者的重視。它屬于彈塑性靜力分析,是進行結構在側向力單調加載下的彈塑性分析。具體做法是在結構分析模型上施加按某種方式(研究中常用的有倒三角形、拋物線和均勻分布等側向力分布方式)模擬地震水平慣性力作用的側向力并逐步單調加大,使結構從彈性階段開始,經歷開裂、屈服直至達到預定的破壞狀態甚至倒塌。這樣可了解結構的內力、變形特性和能量耗散及其相互關系,塑性鉸出現的順序和位置,薄弱環節及可能的破壞機制。這種方法彌補了傳統靜力線性分析方法如底部剪力法、振型分解法等的不足并克服了動力時程分析方法過程中,計算工作量大的問題,僅用于近似評估結構抵御地震的能力。但是,傳統的推覆分析方法基本上只適用于第一振型影響為主的多層規則結構,對于高層建筑或不規則的建筑,高階振型的影響不容忽視,并且對于非對稱結構,還必須考慮正、反側反推覆的不同所帶來的影響。此外推覆分析方法無法得知結構在特定強度地震作用下的結構反應和破壞情況,這限制了它在抗震性能設計中的使用。
地震動能量是刻畫地震強弱的綜合指標,它綜合體現了地面最大加速度和地震持時兩個反映地面運動特性的重要因素。結構地震反應的能量分析方法是一種能較好地反映結構在地震地面運動作用下的非線性性質及地震動三要素(幅值、頻譜特性和持時)對結構抗震性能影響的方法。地震時,結構處于能量場中,地面與結構之間有連續的能量輸入、轉化與耗散。研究這種能量的輸入與耗散,以估計結構的抗震能力,是結構抗震能量分析方法所關心的問題。結構在地震(反復交變荷載)作用下,每經過一個循環,加載時先是結構吸收或存儲能量,卸載時釋放能量,但兩者不相等。兩者之差為結構或構件在一個循環中的“耗散能量”(耗能),亦即一個滯回環內所含的面積。能量等于力與變形的乘積。一個結構(構件)所耗散的地震能量多,不僅因為它承擔了較大的地震作用,還因為它產生了較大的變形。從這個意義上來看,耗能構件是用它自身某種程度破壞所作的犧牲,來維持整個結構的安全。所以,每次大的地震作用之后,人們看到那些沒有其它途徑耗散所吸收的地震作用的能量的結構,只有通過結構自身的破壞來釋放所有的多余能量。因此,結構的抗震設計應當注意保證結構剛度、強度和變形能力的協調與統一,如結構的延性設計就是在傳統的單一強度概念條件下進行的彈性抗震設計的基礎上,充分考慮結構和構件的塑性變形能力,在設防烈度下允許結構出現可能修復的損壞,當地震作用超過設防烈度時,利用結構的彈塑性變形來存儲和消耗巨大的地震能量,保證結構裂而不倒。
能量法在近半個世紀的研究中發現較快,但由于地震本身的復雜性能量與結構反應之間的關系仍需我們進行進一步的探索。
篇4
1.1結構抗震性能目標本工程存在扭轉偏大、樓板不連續、尺寸突變、豎向構件不連續、承載力突變等多項不規則,屬特殊類型高層建筑。結構設計確定的抗震性能目標見表1。由表1可知,本工程采用的性能目標較高,介于《高層建筑混凝土結構技術規程》(JGJ3—2010)[2](簡稱高規)定義的A,B級之間,主要原因有兩個方面:一方面是經對比分析,與B級目標相比較,性能目標提高后僅核心筒部分需要增加較少工程造價,對于總體造價而言,增加比例很小的造價即可滿足性能目標要求;另一方面是考慮到結構懸挑比較大,且是乙類建筑,特意提高其性能目標。本工程于2012年6月通過廣東省超限高層建筑工程抗震設防專項審查。
1.2結構受力特點及分析地震作用下整個結構有比較復雜的反應,主要有以下幾個方面:一是水平和豎向震動耦合;二是懸挑端有比較大的豎向震動反應,導致核心筒遠離懸挑端一側混凝土承受拉力;三是水平地震和豎向地震引起的整體結構扭轉作用導致結構筒體有比較大的扭轉效應。(1)大震作用下懸挑端位移分析大震作用下懸挑端的位移見表2。由表2可知,X向地震作用下,懸挑遠端Z向位移比較顯著;Y向地震作用下,因結構扭轉造成懸挑遠端Y向水平位移比較顯著。X向地震作用下,懸挑遠端Z向位移由框筒部分的剪彎變形(包含繞Y軸的轉動變形)及懸挑部分自身的豎向彎曲變形組成;Y向地震作用下,懸挑遠端Y向位移由框筒部分繞Z軸的轉動變形和懸挑部分自身的水平彎曲變形組成。(2)小震Y向作用下核心筒的總力矩分析圖6給出了核心筒外筒墻、柱編號,表3給出了各墻體在Y向小震作用下的剪力及其相對于核心筒形心點O的力臂。由表3可知,核心筒外筒墻體對核心筒形心點O的力矩之和為979014kN•m。Y向地震作用為61147kN,等效力臂為979014/61147=16.01m。此巨大力矩將通過內藏鋼骨的核心筒傳遞至地下室的核心筒,再傳至基礎。(3)核心筒外筒墻體軸向內力分析表4給出了小震、大震作用下核心筒外筒墻體軸向內力,其中小震作用考慮恒荷載和活荷載及風荷載,大震作用僅考慮恒荷載和活荷載,活荷載均按最不利布置(僅懸挑部分有活荷載)。從表4可看出,小震作用下,墻體Q2,Q5均受壓,墻體Q3受拉,墻體Q1總體是以受壓為主,但其與墻體Q3相連端受拉;在大震作用下,墻體Q1,Q3受拉,墻體Q2在4層以上受壓、在4層及其以下受拉,墻體Q5在5層以上受壓、在5層及其以下受拉。(4)核心筒外筒墻體剪壓比分析圖7給出大震作用下核心筒外筒墻體的剪壓比曲線,其中剪力按照墻體中混凝土和型鋼所能承擔的比例分配,此處用于計算剪壓比的剪力為混凝土部分承擔的剪力。由圖7可見,大震作用下核心筒外筒墻體的剪壓比均小于限值0.18,滿足設定抗震性能目標的要求。圖7核心筒外筒墻體剪壓比曲線(5)懸挑部分豎向地震作用及其收斂分析通過SATWE和ETABS軟件,采用振型分解反應譜法與彈性時程分析法對比分析了豎向地震作用下結構的反應,得到了豎向地震作用下懸挑部分的豎向地震作用系數(即懸挑部分所承受的總豎向地震力與懸挑部分的重力荷載代表值的比值)。懸挑部分恒荷載總重GDL=58269kN,活荷載總重GLL=7822kN,懸挑部分結構重力荷載代表值GE=GDL+0.5GLL=62180kN,故小震作用下懸挑部分的豎向地震作用系數α小震=2641kN(小震豎向地震力)×1.25(小震放大倍數)/62180kN=0.053,在大震作用下豎向地震作用系數為α大震=16145kN(大震豎向地震力)/62180kN=0.260。高規中并未規定7度(0.10g)時的豎向地震作用系數,但參照高規插值,可以得到7度(0.10g)時的豎向地震作用系數為0.05,本文如不考慮1.25放大系數,其豎向地震作用系數僅為0.0424,小于0.05,故在采用振型分解反應譜法計算豎向地震作用時應注意其所計算的豎向地震作用是否達到高規規定值。Z向地震時程分析所得的豎向剪力平均值與彈性反應譜分析所得的豎向剪力之比為2987/3389=0.88。盡管不同位置的構件內力隨豎向振型參與系數的變化是不一致的,但是當振型參與系數在15%~90%之間時,其豎向地震引起的構件內力增長非常緩慢,此與高層結構有較大不同。
1.3結構性能化設計措施(1)為提高剪力墻連梁的延性,在連梁中配置型鋼,并加強其腰筋及箍筋配置(配筋率不小于0.4%且不小于計算配筋)。(2)在核心筒剪力墻中配置型鋼,一是為了承擔部分剪力及彎矩;二是與墻體豎向鋼筋共同承擔拉力。(3)通過核心筒的連梁來實現結構耗能,雖然連梁中設置了型鋼,但墻體中也設置了型鋼,相對于墻肢而言,連梁截面內力遠小于墻體截面,所以地震作用時是連梁首先發生彎曲破壞,起耗能作用。雖然結構承載力已按較高的性能目標實現,但為使結構具有較好的塑性變形能力,結構仍然按高延性設計,核心筒及框架柱抗震等級為一級,鋼構件抗震等級為二級。
2結構計算分析
2.1振動模態采用SATWE,ETABS軟件進行多遇地震作用下的計算對比分析。ETABS軟件計算得到的結構的振型圖如圖8所示(兩種軟件計算得到的振型一致),由圖8可以看出,懸挑部分有較大的振動反應。
2.2整體分析結果對比由SATWE,ETABS軟件計算的結構總體指標對比見表5。由表5可知,兩個軟件計算的結果比較接近,相符度較好。SATWE軟件計算的整體穩定性驗算指標剛重比X向為117.86,Y向為46.79,均大于規范限值2.7(不考慮二階效應的限值);ETABS軟件計算的整體穩定性驗算指標剛重比X向為106,Y向為46.79,均大于規范限值1.4(穩定限值)和2.7(不考慮二階效應的限值)。
2.3施工卸載模擬計算懸挑桁架部分采用滿堂腳手架施工,腳手架支承于地下室頂板上,地下室頂板考慮60kN/m2的施工荷載。采用分段吊裝的施工方案,桁架在現場焊接成型,采用塔吊和汽車吊相結合的方法完成吊裝(圖9)。全部鋼結構構件安裝完畢后再進行腳手架卸載,卸載順序為由遠端向根部逐漸延伸,在卸載過程中應對鋼結構變形及位移進行現場測量。卸載完畢后,開始安裝鋼筋桁架,澆筑樓板,砌筑固定隔墻,然后封閉樓板后澆帶。圖9施工方案示意圖本工程進行了施工卸載模擬分析,分四步拆腳手架,首先拆第四節下對應的腳手架,接著拆第三節、第二節、第一節下對應的腳手架。卸載過程遠端位移模擬顯示懸挑遠端滿足《鋼結構設計規范》(GB50017—2003)[3](簡稱鋼規)要求,雖卸載過程與使用狀態下的結構支撐條件和荷載作用條件不同,但卸載過程中構件的內力符號沒有發生變化,且其應力比均小于正常使用狀態下的應力比。
2.4防連續倒塌分析與設計對于防連續倒塌的分析,參考高規采用了兩種方法:一是拆除構件法;二是施加表面荷載法。(1)KZ1是受荷最大、最為重要的柱,所以對其按拆除構件法驗證是否滿足防連續倒塌的要求。計算結果表明,與所拆除構件直接相連的構件最大應力比為[(0.69/1.35)/1.25]×2=0.818,斜拉腹桿最大應力比為(1.13/1.35)/1.25=0.67,其余各構件應力比均小于1。(2)對于桁架的主要弦桿和腹桿,采用在構件表面附加80kN/m2側向荷載的方法進行驗證分析,分三步進行:第一步是按未加側向荷載進行計算;第二步是將構件從整體結構中取出來,施加側向荷載進行內力計算;第三步是疊加前兩步內力。計算結果見表6,由表6可知,桁架一的主要桿件應力比均小于1.0。
2.5人群荷載下樓蓋振動舒適度驗算由于樓蓋結構的跨度比較大,故對其進行了舒適度研究,采用MIDAS/Gen進行樓蓋振動舒適度分析。樓蓋振動舒適度分析考慮兩種人群荷載工況:工況一為21人同頻率、同相位行走;工況二為60人同頻率、不同相位行走的。計算結果表明,樓蓋最大振動加速度為0.0452m/s2,滿足規范限值0.05m/s2要求。
2.6樓蓋風振時程分析基于風洞試驗實測數據,結合風速時程樣本,采用MIDAS/Gen軟件模擬結構風振[5],本工程中只考慮順風向風速的影響,采用了Davenport脈動風速譜,參考深圳市氣象局近年來的風速統計資料,設定參考風速,以MonteCarlo法為基礎采用諧波疊加法,設定關心的頻率始值和終值,隨機產生風速時程曲線。局部風振時程荷載按點荷載直接施加于模型相應測點處。分析結果表明,不同風振時程樣本引起的樓蓋最大加速度差別較大,這主要是由于隨機生成的風振時程的自身差異所導致的;基于本文的時域分析方法及風振報告提供的頻率方法(其中樓蓋振動最大加速度為0.221m/s2)計算出的樓蓋風振效應均很明顯。針對本工程而言,風荷載引起的豎向振動是設計的控制因素。
3關鍵節點設計及有限元分析
懸挑桁架從混凝土核心筒及外框柱伸出,第7層E,B點(圖3)處節點交匯桿件達11根,節點受力比較復雜。懸挑桁架下弦桿根部彎矩非常大,盡管鋼材已采用Q420GJC,但板厚仍超過100mm,基于此提出了解決桁架根部局部彎矩過大的新型節點,見圖10。此節點通過對工字形截面翼緣板加下掛板的方式,變相增加了翼緣板的寬度。此種做法一是可以減小板厚,降低焊接難度;二是相對于箱形截面其便于焊接和混凝土澆搗。節點分析擬考慮兩種荷載工況:一是大震作用工況;二是構件屈服工況,即加載至某構件(根據大震的分析結果,選取承載能力利用率最高的構件)發生屈服。選取桁架一下弦桿梁柱節點及桁架二下弦桿梁墻節點進行節點分析。采用MIDAS/FEA[7]進行分析。大震作用下節點應力云圖如圖11所示,結果表明,節點區幾乎所有的鋼構件均保持在彈性狀態,混凝土受拉及受壓均保持在彈性狀態,節點區構件滿足承載能力極限狀態的要求。構件屈服工況下節點應力云圖如圖12所示,結果表明,應力最大鋼構件中和軸以下全部發生屈服時,節點核心區內板件仍保持在彈性狀態,節點板屈服區域僅分布在以屈服構件相連的局部區域,沒有向節點板核心區擴展,滿足“強節點、弱構件”的控制要求。
4結語
篇5
關鍵詞:建筑結構;抗震;設計;措施
中圖分類號:TU3文獻標識碼: A
地震災害涉及到人類的生命和財產安全,是人類生活面臨的重要的問題,也是建筑結構抗震設計的主題之一。因此,在建筑結構設計的時候,必須充分考慮到抗震設計,這已經在房屋建筑結構設計中占據非常重要的位置,在設計時只有采取適當的措施,以防止地震對建筑物的造成的巨大破壞,為減少地震的損失與危害在設計上做出應有的貢獻,以保護人民的生命和財產安全。
一、 建筑結構抗震的重要性
在建筑結構中應用抗震結構的設計,首先能夠保證人員的生命安全,為內部人員的逃生以及求救爭取寶貴的時間; 其次,強化了建筑結構的設計,增加了建筑結構的抗震性,也將是建筑結構的使用壽命得到提升,使其利用價值得到不同程度的飛躍。建筑的基本功能是供人們居住,隨后才是審美價值的體現。就建筑的基本功能來說,其能夠供人居住的首要前提是安全,包括使用安全以及建筑物自身的安全。也就是說,建筑物只有在保證了自身安全的前提之下,才能夠供人們使用。因此,在建筑物的設計和建設過程中,往往需要對影響建筑安全性的因素作全方位考慮。地震作為一種不可預知的自然災害,其對建筑物安全性能的影響極大。而建筑物的安全一旦遭受威脅,必然會出現倒塌事件,從而砸傷和掩埋生命,給人們帶來物質和精神上的雙重損失。因此,建筑物在建設初期就必須做好抗震的準備工作,從根本上確保人們的生命和財產安全。
二、提高建筑結構抗震設計的措施
1、合理選址以提高建筑物的抗震能力
地震發生時,如果建筑物本身抗震能力弱,結構不堅固或者建筑剛性強而韌性不足,很容易遭到嚴重的破壞神之倒塌。如果建筑物選址不合理,地基建在地質不穩固的地方,地震會引起地表的地裂和錯動以及地面沉降,這種破壞在地基不穩固的地方更加明顯,因此合理選址以提高建筑物的抗震能力非常重要。在建筑物選址時,易選擇地層穩固地帶,應盡量避開地質不穩固的地方,如斷層帶、地下采空區、地下水空洞區、易液化土等地方。如果沒有條件避開上述不適合建造建筑物的地區時,應采取相應的抗震應對措施。依據國家對建筑物抗震的類別等級,采取人工加固地基、注意建筑結構的整體性、建筑物的外形勻稱、建筑物的結構簡單減輕建筑物自重等,都可以消除地基液化沉陷。還有一種特殊的地質構造,那就是在地基的主要受力層內還存在土質較軟的粘性土層或者不均勻的土層面時,這種地質構造若發生地震,地基會發生不均勻沉降。在此種地質構造地帶施工時,應采用樁基和加強基礎的措施來加固地基。
2、使用科學的結構形式
目前,我國常用的建筑結構有:鋼筋混凝土結構、砌體結構、鋼混結構以及鋼結構。防裂度和地區不同都是造成結構不同的主要因素, 通常鋼筋混凝土結構的抗震能力相對較強,由于自身柔韌性較好, 所以鋼筋混凝土在建筑物變形能力控制中,具有良好的承載能力。因此,在建筑結構設計中,必須根據抗震要求以及功能特征選用合理的結構方案,在審核結構體系中,也必須考慮結構側移度,特別是高層建筑物結構設計。隨著高層建筑結構高度增加,不僅會讓建筑結構在地震作用以及其他負荷作用影響下增大水平位移,也會讓建筑結構抗側移的剛度增加。而對于不同的鋼筋混凝土結構體系、組成方式、構建以及受力特征,在抵抗側移剛度等方面都具有很大的差異性,所以在使用中,必須根據具體情況,選用合理的高度。
3、強化設計質量
由于地震具有超強的危害性,所以在地震設計時,必須注重各項影響因素。由于我國建筑設計水平相對落后,很多建筑結構使用的方案不夠合理,在不能科學布置建筑結構方案的過程中,不僅增加了建筑成本和自身重量,也加大了地震危害。因此,在建筑抗震設計中,必須正確運用抗震理論,根據相關設計原則,不斷保障或者提高建筑結構可靠性與安全性。具體原則包括:努力降低地震作用時結構位移與扭轉,并且建筑結構必須擁有足夠的剛度;結構構件承載能力相對較高,同時具有足夠的耗能能力與延性。在這過程中,延性大說明變形能力相對較高,承載力與強度減小速度緩慢,不能有足夠的空間吸收,還能耗散地震能量,從自身結構避免坍塌。
4、選擇合理的建筑材料
在設計階段,要進行抗震分析和計算,在選擇建筑材料時,要對其參數進行可靠度分析,也要充分考慮材料參數的變異性,而且盡可能選擇自振頻率不同的材料,避免在地震作用時結構物局部或者整體發生共振,造成嚴重破壞。
5、合理的平立面布置
建筑物的動力性能基本上取決于它的建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,從而確保房屋具有良好的抗震性能。建筑物的平、立面布置宜規則、對稱,質量和剛度變化均勻,避免樓層錯層。對體形復雜的建筑物合理設置變形縫,在結構設計時要進行水平地震作用計算和內力調整,并應對薄弱部位采取有效的抗震構造措施,嚴格控制建筑物的高度和高寬比。
6、多道抗震防線的設置
這樣可以避免在地震作用下,由于局部損壞而造成整個建筑結構的損壞,例如框架----抗震墻結構系統,抗震墻可以抵抗較大的側壓力,是第一道防線,當在地震作用下抗震墻發生破壞時,框架結構就起到抗震的第二道防線。 多道抗震防線可以極大的消耗地震能量,延緩或者減輕地震作用對高層建筑的損壞。
7、加強建筑物內部的薄弱部分
在高層建筑中,由于層數較多,建筑面積較大,難免存在一些受力比較大而比較薄弱部分,在建設過程中,要及時對薄弱部分進行加強,采取有效措施增強其強度和剛度,這樣就可以極大提高其承載力,避免在地震作用下過早的屈服產生較大變形,導致建筑結構局部損壞或者整個結構的損壞。
8、保障結構的延性
(1)對于建筑結構當中柱、梁等構件,應該按照強柱弱梁的原則,增加柱子的抗彎能力。鋼筋混凝土的框架在強震發生時,當地震威力致使建筑結構達到最大的非線性位移時,梁端的塑性鉸的塑性轉動會比較大。當柱端的塑性鉸出現比較晚,那么建筑結構達到最大的非線性位移時它的塑性轉動會比較小。這樣就保證了框架有了比較穩定的塑性耗能構件。
(2)要提高結構的延性,還要采取強剪弱彎的措施。因為剪切對于破壞根本沒有延性,如果某個部位一旦發生剪切破壞時,這個部位在整個抗震結構中的作用就會喪失,柱端發生剪切破壞,建筑結構的局部就會發生坍塌,局部坍塌有可能導致整個建筑物的坍塌。因此,要采取措施來增大梁柱和柱端的組合剪力值,保證任何構件在強震發生時都不會損壞其剪力。
總之,結構抗震設計有許多不確定或不確知的因素,很難做到對結構進行精確的抗震計算,并得到結構在地震作用下的真實反應。因此結構的抗震設計除了必須進行細致的計算分析外,要特別注重結構的概念設計。如選取對建筑抗震適宜的建筑場地,設計延性結構,采用輕質高強建筑材料,設置多道抗震設防,加強結構的整體穩定性,重視結構的抗震構造措施等方面,只有這樣才能保證結構的抗震性能。
參考文獻:
[1] 李鳴. 淺談建筑結構抗震設計[J]. 科技致富向導,2013(6):330.
[2] 馬卉,趙靜,王鵬. 對結構抗震設計方法的分析[J].考試周刊,2013(31):195.
篇6
【關鍵詞】建筑結構;抗震;設計;問題;探討
中圖分類號:TU3文獻標識碼: A
一、前言
目前,我國建筑在抗震設計方面來存在很多誤區,同時,在具體設計方面還有很多的設計問題有待于研究。因此,對建筑結構抗震設計的相關問題進行分析很有現實意義。
二、我國對抗震性設計的要求
為了保證建筑物結構的基本抗震性能,我國從法律上對建筑結構的抗震性設計進行了詳細的規定。這些具體的規定都在我國“《建筑抗震設防分類標準》GB50223”中,而具體內容大致如下。
“建筑根據其使用功能的重要性分為甲類、乙類、丙類、丁類四個抗震設防類別?!痹谶@四類抗震類別當中,甲類建筑物的使用功能應該是比較重要的,因此,對其要求的抗震性能也比較高,“地震作用應高于本地區抗震設防烈度的要求,其值應按照批準的地震安全性評價結果確定?!本唧w的抗震措施應該比當地地質狀況要求的抗震烈度要高,如果當地要求的抗震烈度要在6~8之間,那么,實際設計的抗震烈度就應該要比要求高出1度,而如果當地的抗震要求在9度時,實際設計的抗震烈度至少要比9度高出一點。乙類建筑物的抗震烈度與當地的地震作用相符合即可,在采取抗震措施時,如果抗震烈度要求在6~8之間,那么設計的抗震烈度與其相符合即可,如果是在9度以上,實際設計值則需要比9度要高。對于丙類來說,無論是什么情況,設計的抗震烈度值同當地的抗震要求相符合即可,而丁類建筑結構的抗震烈度可以在實際的抗震烈度要求之上適當減低。
三、目前建筑結構抗震性設計的關鍵問題
1、場地選擇
在建筑結構設計中,場地的選擇是其中重要的一部分,所以,在建筑結構抗震性設計中,建筑場地的選擇對建筑結構抗震性能的影響也是比較大的。在選擇建筑場地時,一定要對當地的地理環境有所了解,避開不利的地段。如果場地不利會造成地表發生錯動或者斷裂、地基沉降、滑坡等狀況,對工程質量會產生一定的影響。正因如此,在選擇建筑場地過程中,要盡量避免在“軟弱場地、易液化土、狀態不均勻”等場地進行建筑物的建筑。如果建筑地點的土壤普遍不合格,那么就需要采取一定的抗震防裂措施來提高建筑結構的抗震等級,比如可以強化地基,加強結構的整體性等,對于地基來說可以采用樁基、強化基礎等處理措施,這樣即使不可避免地出現了不利場地,也能通過措施的應用而得以改善。
2、結構體系選擇
建筑結構體系的選擇關系到了建筑結構的穩定性,自然也會成為抗震設計中的重要部分。首先,結構體系要具有相對的獨立性。對于建筑結構體系的整體功能發揮來說,其應該具有一定的整體性和聯系性,但是,對于抗震性來說,建筑結構體系就應該具有相對的獨立性。主要是指結構體系應避免因部分結構或構件破壞而導致整個結構喪失抗震能力或對重力荷載的承載能力。因此,在設計建筑結構時,應該要確保建筑結構具有一定的內力分配功能,這樣如果一個構件受到了震力的破壞,其他的構件仍能夠正常承載,一定程度上避免了整體結構失效可能性的出現。其次,合理分布震力傳遞途徑。在結構設計過程中應該重視豎向的建筑結構要具有垂直重力傳遞的作用,“樓屋蓋梁系的布置”要盡量保證從上部結構中傳遞過來的重力荷載能夠通過轉換層進行轉換,同時,抗側力結構要明確,盡量保證其連續性,如果結構出現了豎向變化則要盡量確保變化的均勻發生。最后,要具有適當剛度和以及強度。對于建筑結構體系來說,適當的剛度和強度能夠在一定程度上避免因為結構的部分薄弱給整體結構造成影響,在框架設計過程中要保證節點在受到較大的重力荷載或者是應力過于集中時,不會出現破壞的狀況。
3、規則布置建筑平面
建筑平、立面布置應符合抗震概念的設計原則,宜采用規則的建筑設計方案,而不應采用嚴重不規則的設計方案。因此,在進行建筑結構抗震性設計過程中,要盡量規則布置建筑平面,通常我們都比較重視建筑結構的對稱性和規則性,結構的對稱性主要是指抗側力主體結構之間的對稱,而規則性主要體現在以下幾個方面,第一,抗側力結構主軸方向剛度和變形特性相近。第二,在抗側力結構豎向斷面均勻、構成的變化均勻。
四、抗震設計方法及存在的問題
1、直接位移設計法
直接位移設計法是一種偏重于結構性能的設計方法,這種方法概念簡單,可根據在一定的地震等級作用下預期的位移計算地震作用,進行結構設計,使構件達到預期的變形,結構達到預定位移。但該方法的使用尚存在一些問題:由于替換結構的剛度是對應于最大位移時的線性剛度,其周期一般比彈性結構的周期長許多,因此,用于位移設計的位移設計反應譜必須比加速度反應譜具有較長的周期范圍;彈性加速度設計反應譜一般是針對阻尼比為0.05,而位移設計反應譜必須適應替換結構所需要的較大阻尼比范圍的要求;近年來的研究表明,近場強震效應對結構的位移反應有較大的放大作用,但直接位移設計方法只從材料的極限應變出發得到構件的變形值進行結構設計,不能考慮近場強震的這種放大效應;結構構件的滯回特性。因此,就現階段而言,采用直接位移設計法實現基于結構性能的抗震設計還具有一定的局限性;½這一設計理論沒有體現出結構的非線性分析方法和對所設計結構的實際抗震性能進行驗算的方法。
2、位移影響系數法
位移影響系數法主要體現在確定給定結構非線性靜力彈塑性分析時的最大期望位移,這一最大期望位移定義為目標位移d;采用此方法結構來確定最大非線性位移,概念相對來說比較簡單,但在實際設計計算中需進一步研究:此種方法僅僅是一種衡量結構整體抗震水平的評估方法,無法提供具體樓層和主要構件的損壞情況以及具體結構構件的抗震水準;結構的最大非線性位移與線性位移的關系比較復雜,采用上述多系數的表示方法,每一個系數取值的變化都會對結果產生較大的影響,而在各個系數都不能明確確定其取值的情況下,計算結果與結構的實際最大非線性位移會產生較大的誤差。
3、能力譜方法
能力譜方法是一種偏重于對所設計結構的實際抗震性能進行評估驗算的方法。對結構抗震性能評估的能力譜方法的研究。還存在以下問題需要解決:¹在能力譜方法中,需要將原型多自由度結構體系轉化為等效單自由度體系,而現有的轉化方法都是以結構反應的單一振型或主振型為基礎,而對于高階振型對結構反應影響比較顯著的多高層結構體系或扭轉效應不可忽略的結構體系來說,這種轉化方法將產生比較大的誤差;通常能力譜方法對于抗側剛度沿結構高度方向分布不均勻的結構體系或樓層平面內扭轉反應比較明顯的結構體系無法進行驗算。
五、提高結構設計的質量管理
1、根據《建筑工程設計招標投標管理辦法》業主要求設計單位組建設計項目組,安排結構設計各階段的設計人員、校對人員、專業負責人、審核人員并安排相應的完成時間,形成設計進度計劃表。
2、設計質量直接影響工程周期、成本,是工程建設重要的內容。有效地縮短工程周期和節約成本有利于在市場中能取得先機,獲取更大的效益。設計單位執行ISO9001:2008全面質量管理來保證設計質量是一種行之有效的方法。
3、針對建筑工程的不同類型,由專業負責人對設計和校對人員進行事先指導,形成事先指導表。同時專業負責人應起草本設計項目結構設計統一措施,經結構總工程師批準后,結構人員保證人手一份使用。
六、結束語
建筑抗震設計是一項系統的工程,需要嚴格把握設計的各個環節,按照設計的科學流程,結合建筑的特點,盡量提高設計的合理性,提高建筑抗震的能力。
【參考文獻】
篇7
【關鍵詞】部分框支剪力墻;結構設計;抗震策略
Abstract: paper first part of the frame supported shear wall structure made a brief overview, and then analyzes some of the shear wall structure supported frame design points. In the right part of the frame supported shear wall design, it should reduce the conversion, make overall planning. Meanwhile, in the design of the time to pay attention to maintaining the stability of the overall structure of a large space, as far as possible in the design calculations to be accurate and comprehensive section. Finally, the paper recommends seismic design of high-rise buildings should be performance-based seismic design, and gives the right part of the frame supported shear wall structure seismic design requirements and strategies.
Key words: section frame supported shear wall; structural design; seismic Policy
中圖分類號:TU398+.2 文章標識碼:A
0 引言
隨著我國經濟及社會的快速發展,我國城市化率越來越高,城市有限的空間及土地資源已經很難滿足人們的需求,因此為了爭取更大的建筑空間,高層建筑越來越多。同時,為了更為有效地利用地面的空間,部分框支剪力墻結構設計越來越多地應用在現代建筑的結構設計中?;诖苏撐膶Σ糠挚蛑Ъ袅Y構設計與抗震策略進行了較為系統的研究。
1、部分框支剪力墻結構概述
部分框支剪力墻結構是現代高層建筑中常用的一種結構,具有底部大的特點,因此也被稱為底部大空間剪力墻結構。從這個界定可以看出部分框支剪力墻結構通常在高層或多層剪力墻結構的底部,這種結構的設計一般是根據實際需要,為增加底部空間的使用功能而設置的[1]。所以上層建筑的部分剪力墻不能沿用到底層,不然的話會影響底層空間的使用效率,甚至有些底層的建筑空間在設計之處就已經規劃好用途。所以在建筑的設計過程中就要設計一個結構轉換層,通過結構轉換層來減少建筑底層的壓力[2]。而轉換層下面的一層,即建筑的底層則稱為框支層,框支層中的貫穿上下層的墻則是剪力墻。同時,界定建筑的部分框支剪力墻結構的時候,不僅要看其抗側剛度,還要整個結構的特點,看是不是形成了薄弱層,抗側剛度是不是發生了突變等情況。不能僅僅依據建筑的豎向構件有沒有貫通落地。
2、部分框支剪力墻結構的設計要點分析
通過上面的分析可以看出,部分框支剪力墻結構的界定是有一定的規范的,并不是所有的貫穿轉換層與底層的墻面都屬于部分框支剪力墻結構,還要觀察整個建筑本身的特點。所以在進行部分框支剪力墻結構的設計的時候要注意以下幾個要點。
(1)在對部分框支剪力墻進行設計的時候,應該減少轉換,盡可能采用上下主體豎向布置的方式,以保證主體間的連續貫通。特別是在設計框架—核心筒結構時,要盡量保證核心筒可以上下貫通,這樣可以保證設計的安全性及可靠性。
(2)在設計時要注重統籌規劃,不要將各部分獨立開來,各構件間的關系及布置要主次分明,傳力直接,這樣便于施工,同時減少識圖錯誤的概率。而在轉換層上下主體的豎向結構設計時,要盡量減小水平方向傳力的影響,避免多級復雜的轉換,這樣可以有效地保證水平轉換結構的傳力比較直接。
(3)在設計的時候要加強轉換層下部主體結構的剛度,弱化轉換層上部主體結構的剛度,這樣就可以有效地保證下部的大空間整體結構的穩定性,轉換層上下主體結構之間的剛度及變形度也會比較接近。
(4)在部分框支剪力墻結構設計的計算階段,最為重要的一點就是要全面而且要確保準確,如果計算及計算結果出了問題,將會嚴重影響整棟建筑的質量。而且要特別注意將轉換結構作為整體結構的一個重要的組成,并采用正確的計算模型進行計算。
3、部分框支剪力墻結構的抗震設計
我國地域廣闊,橫跨環太平洋地震帶與歐亞地震帶,所以地震活動比較頻繁,而且強度比較大,同時地震常發地區分布廣,可以說我國是一個震災嚴重的國家[3],所以建筑防震性能的設計非常重要。
3.1 部分框支剪力墻結構抗震設計概述
部分框支剪力墻結構的抗震設計主要是為應對地震發生而進行的一種設計,這種設計是在地震發生的假設前提下進行的。我國高層建筑的城市幾乎都在抗震設防范圍之內,因此部分框支剪力墻結構的抗震設計是部分框支剪力墻結構設計的一項極為重要的內容。一般來說地面運動主要有三種運用描述方式,即強度、頻譜和持時。而地震的強度是由振幅來表示,振幅對建筑的破環程度跟很多因素有關,比如說時間、速度、加速度,還有建筑本身的特性。所以在進行抗震設計的時候要綜合考慮多方面的因素。
3.2 部分框支剪力墻結構的抗震設計要求分析
我國為了更好地預防地震災害,對建筑的抗震設計做了一系列的規定。上世紀80年代的抗震設防目標是“小震不壞、中震可修、大震不倒” [4],但隨著我國經濟及技術的發展,我國在2010年對建筑的抗震設防目標進行了修改,并給定了具體的抗震設計方法,表3-1是常規的設計方法與抗震設計方法的對比表(表3-1)。通過兩種抗震設計的防震目標、實施方法及實踐運用方面的對比可以發現,我國明顯加大了地震災害的預防力度?;谛阅艿目拐鹪O計雖然運用還不夠廣泛,但是對新技術、新材料的適應性比較好,而且也滿足社會發展的趨勢,未來的運用潛力比較大。同時,基于性能的抗震設計可以增加結構概念設計的內容,比如剛度盡量對稱,框支轉換梁上墻體盡量居中布置,從初設階段將一些對結構不利的東西規避掉。綜上所述,對于現代高層建筑的抗震設計應采用基于性能的抗震設計方案。
表 3-1 常規設計方法與性能設計方法的對比分析表
3.2 部分框支剪力墻結構的抗震設計策略分析
通過上面的分析,論文對部分框支剪力墻結構的抗震設計應該采用基于性能的抗震設計方案。因為部分框支剪力墻結構基本上都是高層建筑,采用的基本上都是框架—剪力墻結構,這種結構本身就具有良好的抗震性。導致抗震災害形成的原因大都是由于建筑物的造型與建筑的抗震性能不協調導致的。所以在設計的過程中要特別關注這兩部分的設計。
(1)建筑體型的抗震設計策略分析
對于建筑體型的設計主要關系到的是建筑的布局及體量等方面的設計,這也是建筑設計的一個重要的部分。很多設計師在設計的時候由于太過于關注建筑的造型及建筑本身的使用價值,很容易忽視建筑體型與建筑抗震性能之間的關系。所以在設計的過程中,設計者應該科學地設計建筑的空間體量,包括建筑的高度、比例,建筑的對稱性,還要關注建筑的轉角的設計,同時建筑周邊的抗力,建筑整體的均衡性等方面都要進行綜合的考慮。
(2)建筑立面的抗震設計策略分析
建筑立面通常來說都是由大量的建筑部件組成的,所以建筑立面的設計要關注的主要是立面材料的選擇,部件之間的比例的設計,還有其尺寸大小的控制等方面。而從抗震的角度來說,建筑的設計則要關注以下幾個要點。首先,在設計的時候,不能孤立地進行孤立面的設計,而應該將正立面、側立面及背立面各個立體面之間協調起來,是他們之間得到統一,從而形成一個完整的整體。同時,要注意立面的空間效果和立面各部件之間的均衡性和規則性。
4、結語
通過論文的分析可以看出,隨著城市化進程的進一步推進,部分框支剪力墻結構越來越多地應用在現代建筑的結構設計中,建筑防震性能的設計十分重要。而且在設計的過程中要減少建筑部件間的轉換,采用合理的布置方式,以保證建筑的安全性。同時,要注重設計的統籌規劃,將建筑的各部件之間有機地聯系起來,以實現建筑的整體性和統一性。在分框支剪力墻結構的抗震設計要采用抗震設計方法,并對建筑物的造型及立面的進行抗震設計。最后,希望論文的研究為相關工作者及研究人員提供一定的借鑒與參考價值。
【參考文獻】
[1] 京浩.建筑抗震鑒定與加固[M].中國水利水電出版社,2010.
[2] 敬書,潘寶玉.現行抗震加固方法及發展趨勢[J].工程抗震與加固改造,2011.
篇8
關鍵詞:高層結構抗震,抗震規范,高層抗震注意問題,纖維增強混凝土
1引言
地震是一種突發性和毀滅性的自然災害,它對人類社會的危害首先是引起建筑物的破壞或倒塌,導致嚴重的人身傷亡和財產損失;其次是引起火災、水災等次生災害,破壞人類社會賴以生存的自然環境,造成嚴重的經濟損失,產生巨大的社會影響。近十年來,地殼運動進入活躍期,世界各地都爆發了不同程度的地震,而我國更是世界上大陸地震最多的國家之一,20世紀以來,全球發生7級以上地震1200余次,其中十分之一在我國。例如,1976年7月28日的唐山7.8級地震,2008年5月12日的汶川8.0級地震,2010年4月14日的玉樹地震,都給人們的生命財產安全帶來巨大的損失。同時,由于地震破壞的后果嚴重,我國抗震規范在2008年與2010年都進行了不同程度的修正,目的是加強建筑結構的安全性。因此,為保障地震作用下人們的生命財產損失降至最低,有必要對建筑物的抗震設計進行研究,本文就高層結構的一些常用抗震設計方法進行了討論。
2結構抗震設計方法的發展
結構抗震設計方法的發展歷史是人們對地震作用和結構抗震設計能力認識不斷深化的過程,對結構抗震設計方法發展歷史進行回顧,有助于對結構抗震設計原理的認識,
結構抗震設計方法經歷了靜力法、反應譜法、延性設計法、能力設計法、給予能量平衡的極限設計方法、基于損傷設計方法和近年來正在發疹的基于性能/位移設計法幾個階段[1]。這些抗震設計方法在發展階段相互交錯與滲透,對齊進行系統化整理,結構抗震設計方法可以分為以下幾類[2]:
基于承載力設計方法
基于承載力和構造保證延性設計方法
基于損傷和能量設計方法
能力設計法
基于性能/位移設計方法
根據清華大學葉列平教授的研究,第(5)種方法在結構抗震設計中較前幾種方法優點更為突出,并且在各國規范中應用最廣泛。
3高層抗震設計的設防目標
長期的地震觀測表明,在同一地區不同強度地震的重現期是不同的。強度小的地震重現期,一般10~50年左右發生一次,即所謂頻遇地震或“小震”;強度較大的地震,重現期較長,一般100~500年發生一次,即所謂偶遇地震或“中震”;而強度特別大的強烈地震,重現期一般為數千年,即所謂罕遇地震或“大震”。
高層建筑的使用壽命一般為50~100年,高層住宅的壽命更短,因此要求結構在“大震”作用下不破壞顯然四不合適和不經濟的。這就提出了對于不同強度地震的重現期,結構應具有不同的抗震性能,即所謂抗震設防目標。目前國際上公認的較為合理的抗震設防目標是:
(1)在頻遇地震作用下,結構地震反應應處于彈性階段,結構無損壞或輕微破壞,且結構變形很小,不會導致非結構構件的破壞,震后可無條件繼續使用;
(2)在偶遇地震作用下,結構和非結構構件損傷在一定限度內,震后經修復可繼續使用;
(3)在罕遇地震作用下,結構不產生倒塌,非結構構件無脫落或落下,保證人身安全,
上述抗震設防目標與我國抗震設計規范中的“三水準”即“小震不壞,中震可修,大震不倒”是一個含義?,F在的問題是這種單一的抗震設防目標已不能適應現代工程結構對抗震性能的需求。許多重要建筑對大震作用下的性能要求也不再是不倒塌,而是應滿足一定性能指標要求,以保證其仍具有一定的建筑功能和使用功能,這即是基于性能抗震設計方法研究的目的。
高層抗震設計方法的幾點討論
4.1遵循建筑抗震設計規范
建筑結構抗震規范實際上是各國建筑抗震經驗帶有權威性的總結,是指導建筑抗震設計(包括結構動力計算,結構抗震措施以及地基抗震分析等主要內容)的法定性文件。它既反映了各個國家經濟與建設的時代水平,又反映了各個國家的具體抗震實踐經驗。它雖然收抗震有關科學理論的引導,向技術經驗合理性的方向發展,但它更是具有堅定的工程實踐基礎,把建筑工程的安全性放在首位。正是基于這種認識,現代規范的條文有的被列為強制性條文,有的條文中應用了“嚴禁、不得、不許、不宜”等體現不同程度限制性和“必須、應該、宜于、可以”等體現不同程度靈活性的用詞。任何結構的抗震設計都必須以抗震規范為基礎,按其規定條文執行。
4.2高層建筑抗震設計應注意的問題
高層建筑結構應根據房屋高度和高寬比、抗震設防類型、抗震設防烈度、場地類別、結構材料和施工技術條件等因素考慮其適宜的結構體系,高層建筑的高寬比是對結構剛度、整體穩定、承載能力和經濟合理性的宏觀控制,在設計過程中應注意以下幾點:
應當注意抗震縫的設計,必須留有足夠的防震縫寬度;
平面形狀和剛度不對稱,會是建筑物產生顯著的扭轉、震害嚴重,設計中應避免這種情況,不能避免時應對抗震薄弱處進行加強;
凸出屋面的塔樓受高振型的影響,產生顯著的鞭梢效應,破壞嚴重,設計中加以注意;
高層部分和底層部分之間的連接構造是否合理;
框架柱截面太小、箍筋不足、柱子的延性和抗震能力不夠等容易導致剪切破壞或柱頭壓碎;
沿豎向樓層質量與剛度變化太大容易導致樓層變形過分集中而產生破壞;
地基的穩定性尤為重要;
伸縮縫和沉降縫寬度過小(W昂王與防震縫一切三縫合一)使得碰撞破壞很多;
不應在建筑物端部設置樓梯間,樓板有大洞口會因剛度不均勻而產生扭轉;
中間部分樓層柱子截面和材料改變或取消部分剪力墻,都會產生剛度或承載力的突變,形成結構薄弱層。
4.3采用纖維增強混凝土
對于高層建筑,混凝土材料由于其自身缺陷,地震作用下易于發生脆性破壞,引起結構損傷,因此從建筑材料角度分析,可以在某些關鍵部位采用韌性材料代替混凝土提高整體結構的吸收能量能力與抗震能力??拐鸾ㄖ牧媳仨毦邆漭p質、高強、高韌性特征,例如,木材、輕鋼、型鋼、鋼筋混凝土、復合材料等都可以從某些方面達到抗震目的。而在我國,森林覆蓋面積少,人居木材占有量少,而鋼材成本較高,這些材料的使用都有相當的局限性。而在鋼筋混凝土結構的關鍵部位采用一些韌性較高、延性較好、抗性強度高的纖維增強混凝土對提高結構的抗震性能具有非常明顯的作用[3]。目前,我國的纖維增強混凝土種類繁多,例如,鋼纖維混凝土、聚丙烯增強混凝土、聚合物增強砂漿、超高韌性水泥基復合材料等,這些材料的研究與發展對高層結構的抗震也起著重要作用。
結束語
本文在回顧結構抗震設計方法發展歷史的基礎上,探究了高層結構的抗震設防標準,并討論文高層抗震設計中應該注意的問題。高層抗震是個很復雜的課題,涉及的考慮因素眾多,由于筆者參加工作時間較短,相關工程經驗較少,本文僅提供一般性的參考,如有不到之處,敬請指正。
參考文獻
白紹良. 對新西蘭、歐共體、美國、日本和中國規范鋼筋混凝土結構抗震條文的初步對比分析. 重慶大學, 2000.
小古俊介, 葉列平. 日本基于性能結構抗震設計方法的發展. 建筑結構, 2000年第6期.
Parra-Montesinos G.. High Performance Fiber Reinforced Cement Composites: an Alternative for Seismic Design of Structures. ACI Structural Journal, 2005, 102(5):668-675.
篇9
關鍵詞:建筑結構、抗震設計、現代抗震設計理念、國際抗震設計新理念
中圖分類號:TU3文獻標識碼: A
一、建筑抗震設計的重要意義
不同的變量可以體現出建筑結構的地震反應,在抗震設計中具體使用哪一種設計的變量,要與結構自身的類型相結合,與地震反應的特性以及地震破壞的模式相結合。結合結構抗震設計變量的不同,對結構抗震的設計方法進行分類,一般可以分為以下四種:基于承載力的抗震設計法、基于能量的抗震設計方法、基于位移的抗震設計方法及基于損傷的抗震設計方法。
通過抗震設防目標的角度可以看出,現在的抗震設計方法說到底是以對生命安全進行保護的單一設防目標?,F代社會在不斷的發展,抗震設計不但要預防建筑物的倒塌破壞,更要結合建筑物的重要性以及用途進行有效的控制它的破壞狀態。這對于抗震設防目標來講要求更多級化,基于性能的抗震設計方法的提出就是為了對此問題的解決。性能這一概念具有宏觀性,與力或位移這樣的物理概念不同,不能作為設計變量在抗震設計中直接運用,更多是與建筑物的破壞程度聯系在一起,建筑物的破壞程度可以用位移、力、能量以及損傷等反應參數進行表示,所以,基于性能的抗震設計與基于承載力或者基于位移等抗震設計相比,其設計的理念更為廣義,如今,在進行有針對性的基于位移、損傷以及能量等抗震設計方法的研究中,一般的主導思想都是基于性能的抗震設計。
二、現代抗震設計綜述
第一,基于承載力的結構抗震設計,基于承載力的結構抗震設計,建立在靜力分析的理論之上,以慣性力的形式來反映地震作用,并按彈性方法來計算結構地震作用效應的大小、進行結構彈性位移驗算,把結構構件的強度是否達到特定的極限狀態作為結構失效的準則。一是設計地震作用的確定,在基于承載力的結構抗震設計方法中,設計地震作用取值由設防烈度的地面運動有效峰值加速度考慮放大效應和地震作用效應降低系數的綜合影響后得來的,可以用如下公式表示:f = kβig/r式中:f―建筑結構總水平地震作用;k―地震系數(不同地震分區所取的相當于設防烈度水準的地面運動有效峰值加速度或地面運動峰值加速度與重力加速度的比值,它反映了不同地區設防烈度地震的強弱);β ―動力放大系數(對應于不同周期的結構反應峰值加速度與地面運動有效峰值加速度或峰值加速度比值的擬合值,它反映了不同周期體系對地震作用的動力放大效應);i―建筑重要性系數;r―地震作用降低系數;g―結構重力荷載代表值(取恒載和可能與設計地震作用同時出現的活載之和)。地震系數k 反映的是不同地區設防烈度地震的強弱,根據各地區不同的地震危險性將其細分為不同地震區域,并對每個地區根據統計結果重現期給出其地震系數。動力放大系數β反映了不同周期彈性單自由度體系的動力放大效應,它通常是從相對于地面運動有效峰值加速度作歸一化處理后的多條彈性加速度反應譜曲線中經歸納和簡化后得到的。加速度反應譜是確定的地面運動通過一組阻尼比相同自振周期不同的單自由度體系所引起的各體系最大加速度反應與相應體系自振周期間的關系曲線。二是基于承載力結構抗震設計方法的研究現狀,基于承載力的抗震設計法作為產生較早的方法,從20世紀年代中期開始廣泛應用,經過多年的研究發展較之其他抗震設計方法相對成熟。目前加速度反應譜的短周期段的精度已基本滿足工程使用要求,研究主要關注反應譜的不合理性。隨著高層、超高層等長周期結構的發展,對反應譜長周期的研究也逐漸開展??紤]到現有的科技水平及設計習慣,彈性加速度反應譜仍是現階段結構抗震設計計算的最基本依據,研究工作主要集中在結合場地影響、強震觀測改進及結構時程分析對加速度反應譜的長周期段進行修正,以求使地震作用計算更加合理準確。
第二,基于能量的結構抗震設計,基于能量的抗震設計理論主要是通過能量的角度在地震地面運動對結構的作用進行考慮,具有明確的概念,也能把地震的動強度、頻譜以及持時對結構帶來的破壞進行很好的反映,通過輸入能量與耗散能量的角度對結構進行捕捉到在強烈的地震作用下的變形過程。因為能量分析具有一定的復雜性,基于能量的結構抗震設計的方法還正在研究的階段,要在實際工程設計中進行運用,到現在為止還沒有真正建立起來。在抗震研究中有兩個非常重要的論題就是能量概念與破壞模型,尤其是現在提出的基于性能的抗震設計的思想,對于抗震結構的耗能力以及性能的研究又提出更高的要求。此方法能夠對結構滯形而對結構破壞影響的特點進行全面的考慮,并且對于基于性能的抗震設計理念有著非常重要的意義,所以,基于能量的抗震設計的方法對于抗震理念的進一步發展起著很大的促進作用,也是傳統抗震設計方法得到改進的重要發展方向。
第三,基于損傷的結構抗震設計,近些年以來,經過各國的學者的研究表明,因為地震具有往復性,而且地震動持的時間比較短,所以,受地震的作用,其損傷不但與最大變形有關系,同時,與結構的低周疲勞效應帶來的累積損傷也有關系。通過反映結構的變形以及累積損傷效一些的損傷性能參數能把結構的非彈性性能更好的描述出來。因為計算損傷指數是把計算結構的累積滯回耗能作為基礎的,而結構能量分析的重點是累積滯回耗能計算,因此,也可把基于損傷的設計方法作為能量法結合性能設計思想的一種應用的方法?;趽p傷的抗震設計就是對結構損傷指數的反映,對地震損傷模型的損傷指數進行適當的選取,再進行驗算看是否與預定的損傷性能目標相符合。
第四,基于性能的抗震設計的概念,組織描述基于性能抗震設計就是性能設計是要對設計標準進行選擇,結構的形式要恰當,規劃要合理,才能使建筑物的結構與非結構的細部構造設計得到保證,對建造質量進行控制并進行長期的維護,讓建筑物在受到一定水平地震作用下,破壞的結構處于特定的范圍內。Atc組織的描述是對基于性能抗震設計在進行結構設計中,選用的標準通過結構性能目標來體現,主要是對混凝土結構而且采用基于能力的設計原理。
三、國際抗震設計新理念分析
很多國家在進行高層建筑的抗震設計中,都有很多新的結構出現,例如:美國的紐約四十二層高的建筑物,建在基礎分離的九十八個橡膠的彈簧上,日本 的建在弧型的鋼條上,前蘇聯的建在基礎分離的沙墊層上,這些都是在實際中成功的案例,都在建筑結構的體型上得到明顯的提升,對傳統的插入式剛箍捆住內力的結構體系進行入改變??傊?,在很多建筑設計的結構中都要想辦法避免地震災害。實質上也是對似地球為相當好的慣性參考系”為指導理論的反映,現行的抗震硬抗以及死抗地震打擊設計的制定,實質也是對建筑結構受力體系的改變,而不在似地球為絕對靜止不動的慣性參考系了。
日本東京建造的彈性建筑達到十二座,經過6.6級地震的考驗,達成非常明顯的減災效果。此種彈性的建筑物在隔離體上進行建設,隔離體的組成包括分層橡膠、硬鋼板組以及阻尼器,建筑結構不會與地面發生直接的接觸。阻尼器是由螺旋鋼板組成,可以使顛簸的感覺得到減緩。在美國硅谷建造了一座電子工廠大廈,就是滾珠大樓,采用了一種新的抗震法,也就是在建筑物的每一根柱子或墻體下進行不銹鋼滾珠的安裝,通過滾珠來對整個建筑進行支撐,鋼梁縱橫交錯,卻把建筑物緊緊的固定在地基上,在地震發生的時候,富有彈性的鋼梁會進行自動的伸縮,而大樓在滾珠上發生輕微的前后滑動,可以把地震帶來的破壞大大的減弱。在日本的鹿島,建筑部門對彈簧大樓發明了一種俗人的防震營造法,就是通過彈簧把與地基連接的基礎部分與建筑物的主體分離開來,讓建筑物的主體處于一種能對地震吸收和其他振動沖擊的中介物上。不管地基發生怎樣的搖晃,振動的能量在傳到建筑物的時候,其振動量也會減到原來的十分之一。
四、結束語
總而言之,通過對建筑抗震設計的綜合分析,以及國際抗震設計新理念的總結,可以發現建筑結構的抗震設計是一個龐大的課題,并且具有一定的復雜性,具有非常廣泛的涉及面,本文中對此理念并沒有深入的研究,因為時間以及能力還非常有限。在未來的研究中,在建筑抗震設計中還需要進一步探討各個方面的知識。
參考文獻:
[1] 胡聿賢.地震工程學[m].北京:地震出版社,2006:5-8.
[2] 葉列平,經杰.論結構抗震設計方法[c].第六屆全國地震工程會議論文集,2002.
篇10
關鍵詞:建筑結構;性能;抗震設計;概念;特點;問題;方法
中圖分類號:TU318 文獻標識碼:A 文章編號:
隨著人們生活水平的提高,人們對社會的需求開始呈現多樣化的特點,而隨著建筑物越來越高,體型變得越來越復雜,建筑結構的抗震設計也變得更有挑戰性。人們為了保障自身的安全,對此便有了更多的關注,對基于性能的抗震設計也更加重視起來,在此種方法下,會對設計者有所要求,那就是要對建筑物在地震作用下可能形成的性態反應做出一定的評價。這種方法有很多好處,最主要的就是對于不安全的設計,能夠正確的辨別出來,還可以提出一些方案來解決問題,使得建筑結構更加安全和經濟。
1基于性能的抗震設計概念
以往提到的基于力的抗震設計或者基于位移的抗震設計,由于力和位移都是很明確的物理概念,可以被很容易地理解。但是基于性能的抗震設計,由于性能一詞是一個宏觀概念,不像力或位移可以直接成為設計參數,也可以直接應用到設計中去事實上,這里提到的結構性能往往可以與結構的破壞程度相關,而結構的破壞程度又可以由結構的反應參數來表示(如應力、力、位移、能量以及一些定義的破壞指標)。所以基于性能的抗震設計是比基于力或者基于位移抗震設計更為廣泛的設計理念,更為直接地滿足個人或者社會對建筑物的要求,即要求建筑物是否安全可靠,是否滿足他們的使用需要,而不是普通使用者能提出的建筑物可以抵抗多強地震力,或者是變形控制在什么程度。
基于性能的抗震設計并不是一個全新的概念,盡管目前基于性能的抗震設計得到國際上廣泛的重視與研究,也取得一些初步的成果,但是對于基于性能的抗震設計,現在還沒有一個統一的定義。比較有權威性的是美國SEAOC,ATC和FEMA等組織給出的基于性能設計的描述。其中,對基于性能抗震設計的描述是“性能設計應該是選擇一定的設計標準,恰當的結構形式,合理的規劃和結構比例保證建筑物的結構與非結構的細部構造設計,控制建造質量和長期維護水平,使得建筑物在遭受一定水平地震作用下,結構的破壞不超過一個特定的極限狀態”。一些學者也對基于性能抗震設計進行了描述,可見,盡管不同的機構或者個人對于基于性能的抗震設計描述不完全相同,但是這些論述中有一共同思想,就是基于性能抗震設計的主要思想:即結構在其設計使用期間內,在遭受不同水平的地震作用下,應該有明確的性能水平并使得結構在整個生命周期中費用達到最小。
2 我國現行建筑抗震設計理論的存在的問題
2.1我國現行的建筑抗震設計理論設計方法較為保守,缺乏新的設計理念,很大程度上阻礙了新的設計技術的實施。同時,在設計時候,缺乏對建筑結構性能的考慮,而只是根據我國一些曾經制定的抗震設計規范而行,只從刻板的標準出發,沒有能綜合考慮到各種實際狀況。
2.2我國的設計理論和設計方法在很多抗震指標上規定不清晰,抗震設計理念不明確,加上很多建筑的使用者缺乏一定的抗震建筑知識,難以對所使用的建筑結構的抗震性能和抗震能力做出一個很明確的評判。
2.3目前,我國的建筑抗震設計多是重視對建筑的整體承載力和建筑的結構強度來進行,而忽視了對其他因素的考慮比如建筑結構的性能設計。同時,很多現行設計理論在進行建筑的設計時候,更多的注意著建筑的主題結構的抗震損失,而忽視了很多細節,對損失的控制力度不強。經濟評估準則并沒有在建筑業中得到廣泛應用。
3 性能抗震設計理念的特點
通過對現行抗震設計理論的實踐,可以對兩者進行對比,以得到性能抗震設計理念的特點。
3.1多級設防。
相對于現行的三階段設防目標(小震不壞、中震可修、大震不倒),性能抗震設計注重多級設防,保護非結構件與內部設施,后者的設計理念既保證使用者安全,又減輕業主和社會的經濟損失與壓力。
3.2投資效益準則。
性能抗震設計偏重于安全、經濟等多方面。在安全與經濟之間找到合理、平衡的切入點,確定最佳方案,以優化設計為目的。
3.3自由度大。
相比較傳統抗震設計刻板的被動狀態,性能抗震設計可根據業主的要求確定目標,給設計帶來新的動力。
4 建筑結構基于性能的抗震設計方法
作為性能設計理論的重要內容,基于性能的抗震設計方法顯得尤為重要。那么怎樣合理的運用基于性能抗震設計理念則引起了人們的廣泛關注,為了能夠把它有效地運用到實際中來,有很多學者都對此進行了思考,但是卻還沒有統一的認識,通過他們的總結,我們可以知道讓性能設計思想運用到實際設計中來主要有以下步驟和方法:
4.1性能抗震設計階段
4.1.1概念設計。根據用途和業主的要求,合理確定設防目標,通過場地、建筑平面等進行初步設計。
4.1.2 計算設計。根據預定的設防目標,計算出能影響各類因素的抗震參數,參數與預定目標不符要及時修改,直至滿足參數需求。以基于位移的抗震性能設計為例,主要包括步驟有確定不同強度地震作用下性能目標;根據初步設計,確定結構內的位移的極限值;通過等效阻尼比等各類等效數值,確定等效剛度;設計采用必需的構造措施;評價結構強度要求和變形能力。以嚴謹、科學、合理的態度進行評估,如計算階段有不符合,則需重復計算設計步驟,以不斷完善結構設計。
4.1.3性能評估。通過各類的分析法得出設計結果來確定該建筑結構的性能。
4.2 性能抗震設計方法
目前大致主要有:位移影響系數、能力譜、直接位移設計等方法。
4.2.1位移影響系數法。基于結構性能設計方法,通過分析得出的最大期望位移值,利用等效方法、模態進行確定。以達到此系數的修正作用。此方法還存在著由于它是整體抗震評估方法,無法具體體現主要結構、樓層的損壞情況與抗震水準等問題。
4.2.2能力譜法。1975年被提出,隨后不斷改進。能力譜設計是將能力譜曲線與地震反應譜轉化而來的需求譜,進行比較來評估其抗震性能。此方法側重對結構的實際性能進行驗算、評估。另外,能力譜設計法比較適用于平面結構可簡化且分布較均勻的結構,否將會產生不小的誤差。
4.2.3直接位移設計法。側重于結構性能設計,概念簡單,根據地震等級來預期位移計算,使結構達到預定位移。此方法也存在著只能從建筑結構材料的極限變化得到數值,而不能考慮到預期以外的強震效應的不足。
5 結語
建筑結構基于性能的抗震設計是比較寬泛的體系,它是現行抗震設計的延續與發展,以結構性能分析作為基礎,建筑物的性能目標以全面、科學的因素來確定,使建筑物在面對不同等級的地震時,能達到預期的抗震目標。與傳統抗震設計相比,優點明顯:基于性能抗震相較于以往更系統化;性能抗震設計的適應性、連貫性更好,應用意義更大;靈活性的加大,使設計人員能發揮創造性,增加對新技術、新材料的推廣應用等。性能抗震設計方法也需要解決一些設防水準數據化的劃分,合理的參數取值范圍介定等問題,才能更好的服務于社會經濟建設,達到符合我國國情的設計規范。
參考文獻:
[1]賈明明.鋼框架結構基于性能可靠度的抗震性能設計.哈爾濱工業大學 碩士論文.2003,9.
[2]鄒昀,呂西林.基于結構性能的抗震設計理論與方法[J].工業建筑. 2006,36(9).
[3]汪夢甫,周錫元.基于性能的建筑結構抗震設計[J].建筑結構,2003,33 (3).
[4]程耿東,李剛.基于功能的結構抗震設計中一些問題的探討.建筑結構學報,2001,21(1).
[5]SEAOC VISION 2O00 COMMITTEE.“Performance-Based Seismic Engineering”, Report Prepared by Structural Engineers Association of California, Sacramento, California, U.S.,1995.