高等數學中數學建模分析論文
時間:2022-03-01 03:26:00
導語:高等數學中數學建模分析論文一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。
1數學教學貫穿了小學、中學、大學等諸階段的學習過程,培養了學生以高度抽象的方式來學習、理解、應用數學及相關學科的能力[1]。從基本的概念和定義出發,簡練地、合乎邏輯地推演出結論的教學過程,是學生逐漸形成縝密思維方式的過程。但不可否認的是,在醫用高等數學的教學實踐中,卻因為某些原因致使部分學生是為了“學數學”而學數學,導致興趣索然,對數學望而生畏;或者雖然對常規的數學題目“見題就會,一做就對”,但是對發生在身邊的實際問題,卻無法引進數學建模思想、思路以及基本方法,建立正確的數學模型。因此為了適應科學技術發展的需要和培養高質量、高層次的應用性人才[1],怎樣將數學建模思想貫穿于醫用高等數學的整個教學過程中,以培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。
2對數學建模在培養學生能力方面的認識
數學建模是一種微小的科研活動,它對學生今后的學習和工作無疑會有深遠的影響,同時它對學生的能力也提出了更高的要求[2]。數學建模思想的普及,既能提高學生應用數學的能力,培養學生的創造性思維和合作意識,也能促進高校課程建設和教學改革,激發學生的創造欲和創新精神。數學建模教學著眼于培養大學生具有如下能力:
2.1培養“表達”的能力,即用數學語言表達出通過一定抽象和簡化后的實際問題,以形成數學模型(即數學建模的過程)。然后應用數學的方法進行推演或計算得到結果,并用較通俗的語言表達出結果。
2.2培養對已知的數學方法和思想進行綜合應用的能力,形成各種知識的靈活運用與創造性的“鏈接”。
2.3培養對實際問題的聯想與歸類能力。因為對于不少完全不同的實際問題,在一定的簡化與抽象后,具有相同或相似的數學模型,這正是數學應用廣泛性的表現。
2.4逐漸發展形成洞察力,也就是說一眼抓住(或部分抓住)要點的能力。
3有關數學建模思想融入醫學生高等數學教學的幾個事例3.1在關于導數定義的教學中融入數學建模思想
在講導數的概念時,給出引例:求變速直線運動的瞬時速度[3,4],在求解過程中融入建模思想,與學生一起體會模型的建立過程及解決問題的思想方法。通過師生共同分析討論,有如下模型建立過程:
3.1.1建立時刻t與位移s之間的函數關系:s=s(t)。
3.1.2平均速度近似代替瞬時速度。根據已有知識,僅能解決勻速運動瞬時速度的問題,但可以考慮用某段時間中的平均速度來近似代替這段時間中某時刻的瞬時速度。對于勻速運動,平均速度υ是一常數,且為任意時刻的速度,于是問題轉化為:考慮變速直線運動中瞬時速度和平均速度之間的關系。我們先得到平均速度。當時間由t0變到t0+Δt時,路程由s0=s(t0)變化到s0+Δs=s(t0+Δt),路程的增量為:Δs=s(t0+Δt)-s(t0)。質點M在時間段Δt內,平均速度為:
υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)
當Δt變化時,平均速度也隨之變化。
3.1.3引入極限思想,建立模型。質點M作變速運動,由式(1)可知,當|Δt|較小時,平均速度υ可近似看作質點在時刻t0的“瞬時速度”。顯然,當|Δt|愈小,其近似程度愈好,引入極限的思想來表示|Δt|愈小,即:Δt→0。當Δt→0時,若趨于確定值(即極限存在),該值就是質點M在時刻t0的瞬時速度υ,于是得出如下數學模型:
υ=limΔt→0υ=limΔt→0Δs/Δt=limΔt→0s(t0+Δt)-s(t0)/Δt
要求解這個模型,對于簡單的函數還比較容易計算,而對于復雜的函數,極限值很難求出。但觀察到,當拋開其實際意義僅從數學結構上看,這個數學模型實際上表示函數的增量與自變量增量比值、在自變量增量趨近于零時的極限值,我們把這種形式的極限定義為函數的導數。有了導數的定義,再結合導數的運算法則和相關的求導法則,前面的這個模型就從求復雜函數的極限轉化為單純求導數的問題,從而很容易求解。
3.2在定積分定義及其應用教學中融入數學建模思想對于理解與掌握定積分定義及其在幾何、物理、醫學和經濟學等方面的應用,關鍵在于對“微元法”的講解。而要掌握這個數學模型,就一定要理解“以不變代變”的思想。以單位時間內流過血管截面的血流量為例,我們來具體看看這個模型的建立與解決實際問題的整個思想與過程。
假設有一段長為l、半徑為R的血管,一端血壓為P1,另一端血壓為P2(P1>P2)。已知血管截面上距離血管中心為γ處的血液流速為
V(r)=P1-P2/4ηl(R2-r2)
式中η為血液粘滯系數,求在單位時間內流過該截面的血流量[3,4](如圖1(a))。
圖1
Fig.1
要解決這個問題,我們采用數學模型:微元法。
因為血液是有粘性的,當血液在血管內流動時,在血管壁處受到摩擦阻力,故血管中心流速比管壁附近流速大。為此,將血管截面分成許多圓環來討論。
建立如圖1(b)坐標系,取血管半徑γ為積分變量,γ∈[0,R]于是有如下建模過程:
①分割:在其上取一個小區間[r,r+dr],則對應一個小圓環。
②以“不變代變”(近似):由于dr很小,環面上各點的流速變化不大,可近似看作不變,所以可用半徑為r處圓周上流速V(r)來近似代替。此圓環的面積也可以近似看作以圓環周長2πr為長,dr為寬的矩形面積2πrdr,則該圓環內的血流量可近似為:ΔQ≈V(r)2πrdr,則血流量微元為:dQ=V(r)2πrdr
③求定積分:單位時間內流過該截面的血流量為定積分:Q=R0V(r)2πrdr。
以上實例,體現了微元法先分割,再近似,然后求和,最后取極限的建模過程,并成功把所求量表示成了定積分的形式,最終可以應用高等數學的知識求出所求量的建模思想。
4結語
高等數學課的中心內容并不是建立數學模型,我們只是通過數學建模強化學生的數學理論知識的應用意識,激發學生學習高等數學的積極性和主動性。所以在授課時應從簡潔、直觀、結合實際入手,達到既有助于理解教學內容,又可以通過對實際問題的抽象、歸納、思考,用所學的數學知識給予解決。所選的模型,最好盡可能結合醫學實際問題,且具一定的趣味性,從而使學生體會到數學來源于生活實際,又應用于生活實際之中,以激發學生學好數學的決心,提高他們應用數學解決實際問題的能力[5]。
總之,高等數學教學的目的是提高學生的數學素質,為進一步學習其專業課打下良好的數學基礎。教學中融入數學建模思想,可使學生的想象力、洞察力和創造力得到培養和提高的同時,也提高學生應用數學思想、知識、方法解決實際問題的能力。
【參考文獻】
[1]洪永成,李曉彬.搞好數學建模教學提高學生素質[J].上海金融學院學報,2004,3:(總63)6.
[2]姜啟源.數學模型[M].北京:高等教育出版社,1993,6.
[3]梅挺,鄧麗洪.高等數學[M].北京:中國水利水電出版社,2007,8.
[4]梅挺,賈其鋒,張明,等.高等數學學習指導[M].北京:中國水利水電出版社,2007,8.
[5]蔡文榮.數學建模與應用型人才培養[J].閩江學院學報(自然科學版),27(2),2006,4.
【摘要】學習高等數學的目的在于應用數學思想方法解決實際問題,本文通過實例表明將數學建模思想融入高等數學教學中,可以提高學生應用數學思想、知識、方法解決實際問題的能力。
【關鍵詞】高等數學;數學建模;教學;應用
- 上一篇:政工監督室主任“三八紅旗手”個人事跡
- 下一篇:數學應用能力分析論文