高考數(shù)學(xué)知識范文

時間:2023-03-28 14:23:04

導(dǎo)語:如何才能寫好一篇高考數(shù)學(xué)知識,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。

高考數(shù)學(xué)知識

篇1

高三學(xué)生很快就會面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清楚了?這對于沒有社會經(jīng)驗的學(xué)生來說,無疑是個困難的想選擇。下面小編給大家分享一些高考數(shù)學(xué)知識點歸納,希望能夠幫助大家,歡迎閱讀!

高考數(shù)學(xué)知識點1一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)

主要是考函數(shù)和導(dǎo)數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。

二、平面向量和三角函數(shù)

對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。

三、數(shù)列

數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

四、空間向量和立體幾何

在里面重點考察兩個方面:一個是證明;一個是計算。

五、概率和統(tǒng)計

概率和統(tǒng)計主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復(fù)事件發(fā)生的概率。

六、解析幾何

這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

七、壓軸題

同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

高考數(shù)學(xué)直線方程知識點:什么是直線方程

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X 軸正向的 夾角( 叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。

高考數(shù)學(xué)知識點2一、求動點的軌跡方程的基本步驟

⒈建立適當?shù)淖鴺讼担O(shè)出動點M的坐標;

⒉寫出點M的集合;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關(guān)點法:用動點Q的坐標x,y表示相關(guān)點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

⒋參數(shù)法:當動點坐標x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

-直譯法:求動點軌跡方程的一般步驟

①建系——建立適當?shù)淖鴺讼?

②設(shè)點——設(shè)軌跡上的任一點P(x,y);

③列式——列出動點p所滿足的關(guān)系式;

④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

⑤證明——證明所求方程即為符合條件的動點軌跡方程。

高考數(shù)學(xué)知識點3第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

第二、平面向量和三角函數(shù)。

重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

第三、數(shù)列。

數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

第四、空間向量和立體幾何,在里面重點考察兩個方面:一個是證明;一個是計算。

第五、概率和統(tǒng)計。

這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當然應(yīng)該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

第六、解析幾何。

這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結(jié)下面五類常考的題型,包括:

第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法;

第二類我們所講的動點問題;

第三類是弦長問題;

第四類是對稱問題,這也是2008年高考已經(jīng)考過的一點;

第五類重點問題,這類題時往往覺得有思路,但是沒有答案,

當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

第七、押軸題。

考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高考數(shù)學(xué)知識點4(一)導(dǎo)數(shù)第一定義

設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當自變量x在x0處有增量x(x0+x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量y=f(x0+x)-f(x0);如果y與x之比當x0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義

(二)導(dǎo)數(shù)第二定義

設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當自變量x在x0處有變化x(x-x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化y=f(x)-f(x0);如果y與x之比當x0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義

(三)導(dǎo)函數(shù)與導(dǎo)數(shù)

如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

(四)單調(diào)性及其應(yīng)用

1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)

2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)

高考數(shù)學(xué)知識點5一、排列

1定義

(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。

(2)從n個不同元素中取出m個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為Amn.

2排列數(shù)的公式與性質(zhì)

(1)排列數(shù)的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:當m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1

規(guī)定:0!=1

二、組合

1定義

(1)從n個不同元素中取出m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合

(2)從n個不同元素中取出m個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號Cmn表示。

2比較與鑒別

由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。

排列與組合的區(qū)別在于組合僅與選取的元素有關(guān),而排列不僅與選取的元素有關(guān),而且還與取出元素的順序有關(guān)。因此,所給問題是否與取出元素的順序有關(guān),是判斷這一問題是排列問題還是組合問題的理論依據(jù)。

三、排列組合與二項式定理知識點

1.計數(shù)原理知識點

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)

2.排列(有序)與組合(無序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=n!/(n-m)!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列組合混合題的解題原則:先選后排,先分再排

排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.

捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)

插空法(解決相間問題)間接法和去雜法等等

在求解排列與組合應(yīng)用問題時,應(yīng)注意:

(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;

(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;

(3)分析題目條件,避免“選取”時重復(fù)和遺漏;

(4)列出式子計算和作答.

經(jīng)常運用的數(shù)學(xué)思想是:

①分類討論思想;②轉(zhuǎn)化思想;③對稱思想.

4.二項式定理知識點:

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m

二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)

所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。

篇2

[關(guān)鍵詞] 高考數(shù)學(xué) 創(chuàng)新 試題分析

《普通高中數(shù)學(xué)課程標準》明確指出“要為學(xué)生形成積極主動的、多樣的學(xué)習(xí)方式,進一步創(chuàng)造有利的條件,以激發(fā)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,鼓勵學(xué)生在學(xué)習(xí)過程中,養(yǎng)成獨立思考、積極探索的習(xí)慣”。換而言之,數(shù)學(xué)課程的教學(xué)要注重培養(yǎng)學(xué)生的創(chuàng)新意識并提高自主探究能力。由于當前高考具有較強的導(dǎo)向作用,對課程標準的創(chuàng)新要求最直接、最有效的貫徹方式是將其在高考中予以體現(xiàn)。因此各地區(qū)高考試題皆對探究能力和創(chuàng)新意識給予重視。但高考試題如何有效考察學(xué)生的創(chuàng)新意識和探究能力,雖然經(jīng)過幾年的探索已經(jīng)取得不少成果,但畢竟還處于初級階段,進一步深入地研究是必要的。

本文就2012年福建、北京、上海、四川、湖南、湖北及江西七省高考數(shù)學(xué)創(chuàng)新試題的分布和特點進行分析,啟發(fā)一線教師透過現(xiàn)象看本質(zhì),“尋”規(guī)“導(dǎo)”矩,即“尋”出命題初衷,“導(dǎo)”出教學(xué)規(guī)律。數(shù)學(xué)創(chuàng)新性試題是指相對于特定使用對象而言,在試題背景、試題形式、試題內(nèi)容或解答方法等具有一定的新穎性與獨特性的數(shù)學(xué)試題,其基本目的在于培養(yǎng)或診斷特定使用對象的數(shù)學(xué)創(chuàng)新意識與創(chuàng)新能力[1],筆者之所以選這七個省是因為其高考試題創(chuàng)新點比較明確。

1 創(chuàng)新試題的分布與啟示

本文按照創(chuàng)新試題的界定,分別從題型、分值和所考察的知識點三個角度研究創(chuàng)新試題的分布,由表1不難發(fā)現(xiàn),2012年高考數(shù)學(xué)創(chuàng)新試題分布具有如下特點:(1)創(chuàng)新題型多樣化。創(chuàng)新試題靈活多樣,不拘泥于形式,注重創(chuàng)新能力的考察;(2)知識點相對集中。知識點較集中分布在數(shù)列、不等式和函數(shù)等。(3)分值比重不大。高考是選拔性的考試,適當?shù)膭?chuàng)新題的呈現(xiàn)有助于創(chuàng)新人才的選拔,同時還要顧及成績的正態(tài)分布,因此分值比重不宜過大。以上諸特點也給一線的教師以啟示:(1)創(chuàng)新試題不等于“難題”。創(chuàng)新試題旨在考察學(xué)生創(chuàng)新意識和探究能力,這就要求教師教學(xué)中積極引導(dǎo)學(xué)生主動學(xué)習(xí)、獨立思考,在探究和互動中獲得知識;(2)重視不等于“拔高”。對學(xué)生探究能力和創(chuàng)新意識的培養(yǎng)控制在一定的范圍和層次上,不能脫離實際教學(xué)和學(xué)生生活。因此,一味追求新和巧是不對的,這也是為什么不少教師考前對高考試卷充滿期待,希望能夠眼前一亮,而拿到后卻覺得如此“親切”,不禁有些“失落”;(3)有“跡”可循。創(chuàng)新試題知識點不是“苦海無邊”,往往集中出現(xiàn)在能反映數(shù)、形運動變化的知識點,如,數(shù)列、函數(shù)、不等式、向量及幾何等。

表1 各省創(chuàng)新題型分布、分值、題型及涉及知識點

省份 題號 分值 題型 知識點

福建 理7、10、15,文16 理14,文4 選擇、填空 分段函數(shù)、凸函數(shù)、演繹推理

北京 理20 13 解答 數(shù)列、不等式

上海 理23 18 解答 數(shù)列、不等式、向量

四川 理16 4 填空 數(shù)列、不等式

湖南 理15、16 10 填空 數(shù)列、三角、導(dǎo)數(shù)、幾何概型

湖北 理7、10、13 15 選擇、填空 數(shù)列、函數(shù)

江西 理21 14 解答 數(shù)列、不等式、函數(shù)

2 創(chuàng)新點“尋”規(guī)“導(dǎo)”矩

2012年福建、北京等七省高考數(shù)學(xué)創(chuàng)新試題形式多樣,內(nèi)容豐富,但試卷的命制萬變不離其“衷”,即旨在考查學(xué)生的創(chuàng)新意識和探究能力。基于對創(chuàng)新試題的既定,下面將從數(shù)學(xué)概念、試題背景和解題意識等三個方面“尋”規(guī)“導(dǎo)”矩。

2.1 新的數(shù)學(xué)概念

給出一個新的數(shù)學(xué)概念,這里的概念包括定義和性質(zhì),然后要求學(xué)生應(yīng)用該概念解,這是一種最常見的創(chuàng)新題型。這類題型主要考察考生的數(shù)學(xué)閱讀能力。這就要求學(xué)生能夠?qū)Α霸牧稀狈治觥⒏爬ā⒔?gòu)起實質(zhì)意義,并納入到已有知識結(jié)構(gòu)中[2]。如:

例1(福建理10)函數(shù) 在 上有定義,若對任意 ,有 ,則稱 在 上具有性質(zhì) .設(shè) 在 上具有性質(zhì) ,現(xiàn)給出如下命題:① 在 上的圖像是連續(xù)不斷的;② 在 上具有性質(zhì) ;③若 在 處取得最大值 ,則 , ;④對任意 ,有 ,其中真命題的序號是( )。答案:D。

A.①② B.①③ C.②④ D.③④

首先,通過對該題“原材料”的分析,提取與原有知識的共性信息,即 是定義在區(qū)間 上的函數(shù),如一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)等基本初等函數(shù);分析獲取與原有知識相區(qū)別的信息:該函數(shù)具有性質(zhì) ,即 ;然后把該性質(zhì) 與一次函數(shù) 和二次函數(shù) 奇偶性質(zhì)類比,不難發(fā)現(xiàn)性質(zhì) 的涵義為定義域上任意兩個變量平均數(shù)的函數(shù)值小于這兩個變量函數(shù)值平均數(shù)。最后,在正確理解函數(shù) 及其性質(zhì) 的基礎(chǔ)上通過數(shù)形結(jié)合正確推斷下面的四個命題。因此在實際教學(xué)中,教師不必為了應(yīng)對這類型創(chuàng)新題針對性地介紹一些高等數(shù)學(xué)的背景,而要有意識地培養(yǎng)學(xué)生數(shù)學(xué)閱讀能力,引導(dǎo)學(xué)生通過類比、聯(lián)想等方法與已有知識聯(lián)系,指出問題所在,即透過新概念這個“現(xiàn)象”看出考查的已有知識這個“本質(zhì)”,并運用已有知識解決之。

除此之外,北京理20、上海理23、江西理21這三個省份的壓軸題均以新定義數(shù)學(xué)概念的面目出現(xiàn),綜合考查了函數(shù)、數(shù)列、不等式等多方面的知識與方法;湖北理7定義了一個新的函數(shù):“保等比數(shù)列函數(shù)”;湖南理16則定義了一種數(shù)列的變換,考查了數(shù)列知識以及歸納推理能力,這也啟發(fā)教師在教學(xué)中要注重培養(yǎng)學(xué)生的數(shù)學(xué)閱讀能力。

2.2 新的試題背景

該類型試題給出現(xiàn)實生活中一些有意思的現(xiàn)象或事實,而這些現(xiàn)象或事實對學(xué)生來說熟悉而陌生,熟悉是因為學(xué)生經(jīng)常遇到,陌生是因為大多數(shù)人沒有從數(shù)學(xué)的角度思考過該問題。該種題型主要考察學(xué)生觀察、分析和歸納能力,其關(guān)鍵能夠把實際問題抽象為數(shù)學(xué)問題。如:

例2(湖北理13)回文數(shù)是指從左到右讀與從右到左讀都一樣的正整數(shù),如22,121,3443,94249等.顯然2位回文數(shù)有9個:11,22,33,…,99.3位回文數(shù)有90個:101,111,121,…,191,202,…,999.則(Ⅰ)4位回文數(shù)有 個;(Ⅱ) 位回文數(shù)有 個.

首先通過觀察4位回文數(shù)存在的規(guī)律:只要排列前面兩位數(shù)字,后面數(shù)字就可以確定,然后上升到數(shù)學(xué)層面上通過排列、組合確定4位回文數(shù)個數(shù)。進一步,由上面多組數(shù)據(jù)歸納、分析發(fā)現(xiàn), 位回文數(shù)和 位回文數(shù)的個數(shù)相同,所以只需計算 位回文數(shù)的個數(shù)。最后,通過回文的前 位的排列情況確定 位回文數(shù),從而實現(xiàn)從具體到一般的抽象。

福建文16以道路規(guī)劃為背景考查演繹推理,湖北理10以“開立圓術(shù)”為背景考查圓周率近似值的計算,以上各題均旨在考查學(xué)生抽象能力。因此教師教學(xué)中要激發(fā)學(xué)生從數(shù)學(xué)的角度感知生活的興趣,注重學(xué)生探究隱藏在現(xiàn)象背后的數(shù)學(xué)知識,以及領(lǐng)會歸納與演繹、特殊與一般等數(shù)學(xué)思想方法。

2.3 新的解題意識

一般該類試題綜合性較強,解題思路不唯一,但不同解題意識下的解題效率有很大不同。該類試題主要考察學(xué)生的發(fā)散思維能力。如福建理15不僅試題背景新穎,解決問題的思路多樣,其新穎程度和巧妙程度能很好體現(xiàn)學(xué)生的創(chuàng)新意識和應(yīng)用能力,實屬創(chuàng)新題之典范。

例3(福建理15) ,定義運算“﹡”: 設(shè) ,且關(guān)于 的方程為 恰有三個互不相等的實數(shù)根 , , ,則 的取值范圍是________.

實際上,本題至少有兩種解法,法一:根據(jù)題意寫出 的解析式,利用韋達定理與求根公式將 表示為關(guān)于變量 的函數(shù),而后通過換元、求導(dǎo)等手段通過求出此函數(shù)的值域得出本題結(jié)論;

篇3

關(guān)鍵詞:高職高考;數(shù)學(xué)

中圖分類號:G712 文獻標識碼:B 文章編號:1002-7661(2014)09-010-01

近幾年筆者有幸參加了高考評卷工作,在評卷中了解到考生存在一些共同性的問題,以及筆者針對學(xué)生共性所用的一些對策,寫來與同行共同探討。

一、分析近幾年學(xué)生答卷中出現(xiàn)的主要問題

1、知識性的錯誤。高職高考主要考查學(xué)生的“雙基”,在答卷中,學(xué)生出現(xiàn)的主要問題是知識性錯誤。例如,在07年試題中的第17題:已知向量 與向量 垂直,且 ,則 = ,本題主要考查基本的數(shù)學(xué)概念――數(shù)量積,可是不少考生忘記了數(shù)量積的公式,導(dǎo)致錯誤。

2、解題方法選擇不當。在做解析幾何的題目中,不會使用數(shù)形結(jié)合方法做題,導(dǎo)致容易出現(xiàn)錯誤。例如,2010年考題的第22題:已知中心在原點,焦點 在x軸上的橢圓C的離心率為 ,拋物線 的焦點是橢圓C的一個頂點。

(1)求橢圓C的方程;(2)已知過焦點 的直線l與橢圓C的兩個交點為A和B,且|AB|=3,求 。若學(xué)生能借助圖形解題,則容易獲得正確答案。

3、審題能力較弱。在一些應(yīng)用題中,考生不善于理解題目的條件,或者不善于將文字性的數(shù)量關(guān)系轉(zhuǎn)換成數(shù)學(xué)表達式,從而導(dǎo)致出錯。例如,09年考題的第16題:某服裝專賣店今年5月推出一款新服裝,上市第1天售出20件,以后每天售出的件數(shù)都比前一天多5件,則上市的第7天售出這款服裝的件數(shù)是 。考生不會把每天售出的件數(shù)看成等差數(shù)列,不會把中文意思寫成數(shù)學(xué)表達式,即不會寫出 ,求 ,導(dǎo)致答案出錯。

4、計算能力不過關(guān)。在高職考試中,考題計算量不大,考題大多是對基本技能的考查比較多,也不會太復(fù)雜。但高職考生中不少學(xué)生的計算能力不過關(guān),導(dǎo)致失分。如08年考題中的第22題:解不等式 。考生需要對不等式兩邊平方化簡或?qū)Σ坏仁阶筮呥M行配方化簡,但很多考生都不太會,導(dǎo)致失分。

5、解題技巧欠熟練。有不少的選擇題可以運用代入法、排除法解題,但考生不夠熟練。例如,07年考題中的第14題,已知 ,且 為第二象限的角,則 =( )。A、 B、 C、 D、

由題目的條件知角 是第二象限的角,知該角的余弦值必為負,排除掉C、D選項,再結(jié)合題目的另一個條件即可求出。

二、高職備考的對策

所謂上有政策,下有對策。為了讓學(xué)生在高考中迎刃而解,筆者有以下幾點對策:

1、重“雙基”教學(xué),通盤復(fù)習(xí)考點知識的基礎(chǔ)上構(gòu)建學(xué)生的知識網(wǎng)絡(luò)

從近幾年的考試題分析,“雙基”的考查是重點,大題中對于考生的數(shù)學(xué)思想方法上的考查要求不高,因此,在教學(xué)中教師把一些重點考查知識按照某種線索把知識串起來,從而把知識系統(tǒng)化、結(jié)構(gòu)化,形成良好的認知結(jié)構(gòu),抓好“雙基”的教學(xué),不要鉆難題。

2、重點考查的知識點要重點復(fù)習(xí)

從近幾年的考試題分析,大題的類型基本固定,三角函數(shù)、圓錐曲線、函數(shù)、數(shù)列及應(yīng)用題是考查的重點題型,在教學(xué)中重點復(fù)習(xí)這幾個部分的解答題,按專題復(fù)習(xí)是一種有效的教學(xué)方法。例如,在歷年的解析幾何題中,一般都是直線與某兩種圓錐曲線的結(jié)合,求直線與某種圓錐曲線的交點或求圓錐曲線的方程。那么,在專題復(fù)習(xí)中,把曾經(jīng)考過的解幾題和可能考的類型都列出來,讓學(xué)生把握各種可能的試題和相應(yīng)的解題方法。

3、有效提高學(xué)生的運算能力

學(xué)生的運算能力是高職考試重點考查的內(nèi)容,但是,從多年的閱卷來看,學(xué)生的運算能力較弱,需要重點培養(yǎng)。做到“基本的運算一遍就做對,復(fù)雜的運算多做幾遍能做對。可以說,運算能力很大程度上決定了得分的高低。每天要求學(xué)生做10道題,其中選擇、填空共8題,解答題2題。解答題要求學(xué)生寫出詳細的計算過程。日常訓(xùn)練主要針對解方程、解不等式、分數(shù)加減乘除、乘方、開方的運算、分母有理化等。

參考文獻:

篇4

優(yōu)化課堂教學(xué),提高課堂效率

要利用好課堂40分鐘,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極、主動地融入到課堂教學(xué)中,優(yōu)化課堂教學(xué),提高課堂效率,讓學(xué)生高效地學(xué)習(xí)。

精心設(shè)計教學(xué)內(nèi)容,改進教學(xué)方法教師要認真鉆研教材,把握教材的重難點,對所有的知識點做到了如指掌,不能出現(xiàn)知識性錯誤,上課時才能游刃有余。設(shè)計寬松的課堂教學(xué),讓學(xué)生在輕松愉快的課堂氣氛中獲得更多的知識,充分發(fā)揮學(xué)生的主體作用。改變過去那種傳統(tǒng)的、單一的講授法,以小組討論、情景設(shè)置、問題提煉、歸納總結(jié)等多種手段,讓學(xué)生勇于發(fā)表自己的看法、見解,在不知不覺中完成教學(xué)任務(wù)。

精心設(shè)計數(shù)學(xué)練習(xí),多讓學(xué)生動手操作基礎(chǔ)知識是教學(xué)的重點,在設(shè)計練習(xí)時,要扣住數(shù)學(xué)基礎(chǔ)知識,不要拋開教材的基礎(chǔ)去尋求偏題、難題。設(shè)計練習(xí)要選擇那些具有代表意義而又有一定規(guī)律的典型題目,讓學(xué)生進行練習(xí),盡量做到舉一反三,一題多用,讓學(xué)生練而有效,觸類旁通。根據(jù)學(xué)生的知識、智力層次不同,可以設(shè)計必做題和選做題,必做題是基礎(chǔ)部分,而選做題則重在培優(yōu)。教師還可以設(shè)計一些具有趣味性和創(chuàng)造性的練習(xí),可大大提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,又能啟發(fā)學(xué)生用心思考,挖掘?qū)W生學(xué)習(xí)的潛力。比如,在組織學(xué)生做口算練習(xí)時,除了看題算外,筆者常常用聽題算和搶答等形式。用這樣的形式時,學(xué)生精神高度集中,很少有人出錯,效果出奇地好。

注重課堂管理課堂組織管理地好壞,不僅體現(xiàn)一個教師的教學(xué)能力,更直接影響教學(xué)效果。即使課準備得再充分,講得再精彩,如果學(xué)生不聽或不愿意聽,而教師卻熟視無睹、聽之任之,形成習(xí)慣就很難改變,課堂質(zhì)量就無法保證。所以,要在上課時注意學(xué)生的一舉一動,幫助學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣。上課時專心聽講,集中注意力,是聽懂一節(jié)課的前提,從開學(xué)的第一節(jié)課起,就對學(xué)生提了兩方面的要求:認真聽課,每個知識點只講一遍,不會重復(fù);學(xué)會聽同伴的發(fā)言,學(xué)生因年齡小通常只注意聽教師講課,而忽視同伴的發(fā)言。除了養(yǎng)成專心聽講的習(xí)慣外,在課前、課后,還要十分注意教會學(xué)生預(yù)習(xí)、復(fù)習(xí)、做作業(yè)、反思總結(jié)等良好習(xí)慣。要求學(xué)生作業(yè)工整,講規(guī)范,符合要求,按時上交作業(yè)等。學(xué)生掌握了這些方法,長期堅持,就會養(yǎng)成良好的學(xué)習(xí)品質(zhì)和學(xué)習(xí)習(xí)慣。

培優(yōu)輔差,面向全體學(xué)生

輔導(dǎo)后進生,要把握3個優(yōu)先。1)優(yōu)先提問,難題問好生,基礎(chǔ)題鼓勵后進生積極舉手,給一個鍛煉的機會,促使他們認真聽講。2)優(yōu)先批改作業(yè),重視錯題訂正。不管再怎么忙,筆者都優(yōu)先批改后進生的作業(yè),找出做錯的原因,及時糾正他們的錯誤,并要堅持檢查他們改過的錯題,改不對的重新改,直到改對為止。3)優(yōu)先輔導(dǎo)后進生。后進生一般都比較自卑,一般都不主動問教師問題。針對這一特點,筆者經(jīng)常主動問他們:“這節(jié)課聽懂了沒有?還有什么不知道的地方?”利用每天的空閑時間給后進生補課,或者課堂中在教師身邊完成作業(yè),或者用結(jié)對的方法,一個好生幫一個后進生。

在輔導(dǎo)后進生時,還要注意的是持之以恒。數(shù)學(xué)知識都是一環(huán)扣一環(huán)的,如果有一環(huán)知識脫節(jié),差距就會越來越大,再去補難度加大了。還要讓后進生之間形成競爭的趨勢,給他們每個人都確立一個競爭對手,讓他們互相追趕。如在做練習(xí)時,筆者常說:“快做,誰誰已經(jīng)開始做了,我看到他做的又快又好。”考試結(jié)束時,筆者會私下里和幾個學(xué)生談心。這樣一來,許多學(xué)生每次考試、作業(yè)不用筆者去比較,自己就去打聽了。

及時反思,不斷提高自身素質(zhì)

著名的美國教育心理家波斯納提出了一個教師的成長公式:成長=經(jīng)驗+反思。教師要熱愛教育事業(yè),要有熱情和責任心,投入精力和時間,學(xué)習(xí)相關(guān)的教育教學(xué)雜志,學(xué)習(xí)優(yōu)秀教學(xué)案例,借鑒優(yōu)秀教師說課、評課,總結(jié)成功教師的教學(xué)經(jīng)驗,吸取先進的課改理念,不斷提高自身修養(yǎng)與水平。不僅在專業(yè)知識上,也包括語言表達的能力和課堂組織能力等等。在教學(xué)實踐中摸索反思,對凡是看到的、聽到的、親身經(jīng)歷的教育教學(xué)現(xiàn)象進行一番認真的思考,用批判和審視的眼光看自己的思想、觀念和行為,反思之后改進教學(xué)行動,一邊教學(xué)一邊反思,相輔相成、互相促進。只要行動,就有收獲;只要會反思,就有提升發(fā)展。只有不斷反思,才能找到自身的不足。只有反思,才能發(fā)現(xiàn)問題并找到解決問題的辦法,從而不斷提高教育教學(xué)質(zhì)量。

篇5

關(guān)鍵詞: 江蘇高考 數(shù)學(xué)試題 特點

縱觀近年江蘇高考數(shù)學(xué)試題,專家學(xué)者都有這樣的共識:試卷較好地遵循了新課程理念,試卷結(jié)構(gòu)漸趨科學(xué),試題難度更顯合理,整體測試注重基礎(chǔ),凸顯能力,題型布局與占比相對固定,知識分布與考查靈活多變,看似簡單實非容易,欲拿高分也不是易事。一線師生更有同感:走進考場看到試題覺得平時復(fù)習(xí)搞難了,但走出考場對照答案又后悔考試狀態(tài)并不最佳。這些值得我們?nèi)鎸徱暸c深刻反思,對此,筆者從近年高考實際出發(fā),結(jié)合平時教學(xué)實踐,談?wù)剬K高考數(shù)學(xué)試題的體會。

一、重基礎(chǔ),高考一貫遵循的基本原則

基礎(chǔ)知識、基本技能和通性通法等基礎(chǔ)是平時教育的第一步,也是最終考查的主要內(nèi)容,江蘇高考同樣一貫遵循重基礎(chǔ)的基本原則,自2008年至今,數(shù)學(xué)學(xué)科高考試卷模式基本保持不變,試題總分為160分,I卷為14個填空題,每題5分,共計70分,II卷為6個解答題,分別為14分或16分,共計90分。根據(jù)考試說明,其中容易題、中等題和難題所占比例大致為4:4:2,充分體現(xiàn)了以基礎(chǔ)考查為主的原則。理科附加題總分為40分,4個解答題,每題10分,難度比例大致為5:4:1,依舊遵循重基礎(chǔ)的基本原則。與往年相比,近幾年重基礎(chǔ)的趨勢愈發(fā)明顯,試題更突出對基本概念和基礎(chǔ)知識的理解,更突出對常規(guī)方法和基本技能的直接運用,I卷仍舊以基礎(chǔ)考查為主,從近3年高考真題來看,1至8題均比較容易,不少考生可以將答題平均速度控制在每題1分鐘以內(nèi),平均得分也能控制在35以上,I卷的壓軸題13、14題較往年也明顯降低了要求。II卷以能力考查為主,但前三題依舊是基礎(chǔ)題,其中三角函數(shù)和立體幾何的運算量明顯減少,特別是立幾,近幾年大都以柱體等簡單幾何體為命題背景,圍繞點、線、面的基本位置關(guān)系,考查方式以基本定性或定量為主,II卷的中檔題也慢慢趨向于相關(guān)知識的運用和基本技能的應(yīng)用,而傳統(tǒng)意義上的壓軸題由以往的幾乎無人問津的高檔題,慢慢變?yōu)槿缃裨絹碓健坝H民化”的靈活考查,如2015年的壓軸題就很親民,第一問是平時常用的一個結(jié)論,所以其證明也比較容易,第二問屬中檔題,并非很難,考生只要沉著應(yīng)戰(zhàn)就能得到該得的分數(shù)。

二、促規(guī)范,高考始終強化的基本要素

規(guī)范答題是培養(yǎng)學(xué)生做事嚴謹?shù)闹匾緩剑虼私忸}規(guī)范一直有著嚴格的要求,特別是隨著以學(xué)生綜合能力考查為核心的江蘇新高考的不斷推進,規(guī)范作答作為一個不可小視的問題,正受到越來越多師生的高度重視。2015年第7題就是近年高考中經(jīng)常出現(xiàn)的不等式的解集問題,不少考生辛辛苦苦算到了正確結(jié)果,但由于沒有寫成集合形式最終“會而不得分”,這就是典型的不規(guī)范導(dǎo)致的失分,實屬可惜。還有一個不容忽視的問題就是“跳步”現(xiàn)象,如在立體幾何和證明過程中,欲證線面平行,若有如下寫法:AB∥CD,AB∥EF?AB∥平面CDEF,則顯得不規(guī)范。直線CD與EF是什么關(guān)系呢?若相交,則結(jié)論正確;若異面或平行,則結(jié)論錯誤。可見,如果平時不加以提醒和加強訓(xùn)練,就很容易出現(xiàn)漏寫單位、表達不全、標注不對、應(yīng)用題漏答等不規(guī)范問題,最終導(dǎo)致失分。所以,解題規(guī)范關(guān)鍵在于平時的嚴格要求與認真訓(xùn)練,解答的表述要符合邏輯要求,不能因果順序顛倒,過程的書寫要符合規(guī)范標準,不能隨心所欲圖方便。輔助線的添加要正確,實線與虛線要分清,大小寫字母運用要標準,旁邊所作輔助圖形都要交代清楚,且要保持前后一致,應(yīng)用題的坐標系要根據(jù)實際意義正確建立,橫、縱坐標要按照實際需要科學(xué)標注,方程化簡要避免類似于多項式化簡過程中出現(xiàn)的連續(xù)等下去的錯誤現(xiàn)象,答案要符合實際意義,最后一定要進行文字作答,引入?yún)?shù)一定要交代其取值范圍,最終答案要回歸到題目原本要求。因此,我們在平時就要加強針對性訓(xùn)練,真正做到審題仔細、數(shù)學(xué)語言準確、解題過程完整、書寫表述規(guī)范,演繹要有理有據(jù),步驟清晰,表達準確到位,真正形成良好的解題規(guī)范。

三、強能力,高考不斷凸顯的根本核心

高考作為最具權(quán)威的選拔性考試,注重對學(xué)生能力的培養(yǎng)與考查是其導(dǎo)向所在,也是其實施的重心所在,更是江蘇新高考不斷凸顯的根本核心。B級與C級考點是每年高考的能力題之命題“原材料”,一般出現(xiàn)在I卷的第10題往后,II卷通常以能力考查為主,特別是第18題至20題,能力要求相對較高,往往是對學(xué)生綜合能力的集中考查。“抽象概括能力、空間想象能力、數(shù)據(jù)處理能力、運算求解能力和推理論證能力”,對這“五大能力”的考查看起來就不簡單,而又著實神秘,只有在每年的6月8日才揭開其面紗,真真切切地以每個真題在高考試卷中亮相,卻又每年穿著不同的外衣、演著不同的角色、起著不同的作用,面對每年的實際試題,大家是仁智各見,褒貶不一。但是,筆者認為萬變不離其宗,只是考查的側(cè)重不同而已,且近年的高考試題特別是從2013年開始,確實是“穩(wěn)中求變,亮點頻出,精彩紛呈”。以2015年試題為例,第10題考查知識很基礎(chǔ),能力要求不算高,但呈現(xiàn)方式卻很靈活。再如第13題,題設(shè)兩個函數(shù)比較熟悉,目標方程也不復(fù)雜,定性不定量、利用數(shù)形結(jié)合及分類討論思想解決問題的解題策略容易確立,但綜合能力要求明顯較高,需要考生具備相應(yīng)的數(shù)學(xué)思想與方法。相比之下,第17題的第2小題對運算求解能力和數(shù)據(jù)處理能力的要求就顯得直接而給力。作為壓軸的第19、20題仍然以高次函數(shù)和數(shù)列為命題背景,讓考生既心里有數(shù)又有心理準備,題目層次分明,區(qū)分度明顯,能力要求高,充分發(fā)揮了把關(guān)功能。可見,“五大基本能力”確是高考考查的重點所在,理應(yīng)也成為我們平時教學(xué)、訓(xùn)練與考查的關(guān)鍵所在。

四、提素質(zhì),高考不懈追求的重要目標

篇6

一、明確課堂任務(wù),重視課前導(dǎo)學(xué)

學(xué)生知識基礎(chǔ)、智力水平相對落后,思考問題解決問題的時間相對較長,課堂教學(xué)中往往不能保證學(xué)生有效進行學(xué)習(xí)與思考的時間與空間.我們的對策是:課前導(dǎo)學(xué),讓學(xué)生提前明確學(xué)習(xí)的知識點——課堂要解決的問題.具體做法是:教師把所授內(nèi)容簡明扼要布置下去 ,圍繞“是什么,為什么”讓學(xué)生嘗試解決問題.由于是在課外,探究的時間與空間相對比較寬裕,學(xué)生自主收集資料、處理信息、操作實踐、獨立思考等在時空上都有了一定的保證,有利于課堂問題的解決.

二、引導(dǎo)問題討論,營造課堂氣氛

1.上課開始時便介紹主要內(nèi)容、知識的基本結(jié)構(gòu)及其特點,使學(xué)生一開始便有一個總的概念和基本輪廓,使學(xué)生及時抓住要領(lǐng),穩(wěn)定學(xué)生情緒.2.適時恰當?shù)亟榻B一些數(shù)學(xué)家、數(shù)學(xué)史片段,或者聯(lián)系教材內(nèi)容,結(jié)合專業(yè)或?qū)嶋H生活中的事例,啟發(fā)學(xué)生聯(lián)想,展開問題討論.3.把問題提得生動突出,使學(xué)生對教材內(nèi)容和主題都留下深刻的印象,取得創(chuàng)設(shè)問題情境的最佳效果.設(shè)問時,一要“新”,即標新立異,不落俗套;二要“奇”,即驚奇和奇異;三要“準”,要有的放矢;四要“分”,即較難的問題要分解為若干個小問題;五要“變”,設(shè)問時要靈活多變.此舉起到活躍課堂氣氛,集中學(xué)生注意力,激發(fā)學(xué)習(xí)興趣的作用.

三、梳理內(nèi)容要點,理清來龍去脈

針對數(shù)學(xué)學(xué)科系統(tǒng)性強且知識點教學(xué)又往往分散出現(xiàn)的特點,教師引導(dǎo)學(xué)生將知識梳理、分類、整和,溝通知識的內(nèi)在聯(lián)系,把握知識的內(nèi)涵與外延,將平時所學(xué)的知識串成線,連成片,結(jié)成網(wǎng),形成清晰的脈絡(luò).

四、重視課堂練習(xí),重塑學(xué)習(xí)習(xí)慣

不少教學(xué)效益低下的課堂,問題往往出現(xiàn)在學(xué)生的學(xué)習(xí)習(xí)慣上.因為習(xí)慣不好,不少學(xué)生在有限的課堂學(xué)習(xí)中,不集中聽講,不認真思考,不認真練習(xí),極大浪費了學(xué)習(xí)時間,學(xué)習(xí)效益也不高.為此我把學(xué)生良好習(xí)慣的培養(yǎng)放在心上,抓在手上,努力培養(yǎng)好習(xí)慣,抑制壞習(xí)慣.具體來說,就是以課堂練習(xí)為抓手,促使學(xué)生動手、動筆、動口,以培養(yǎng)學(xué)生一心向?qū)W的習(xí)慣、專心致志的習(xí)慣、認真思考的習(xí)慣、認真作業(yè)的習(xí)慣等.

五、改革測評模式,鞏固學(xué)習(xí)成果

由于學(xué)生的數(shù)學(xué)成績普遍偏低,數(shù)學(xué)基礎(chǔ)差,對數(shù)學(xué)在專業(yè)或現(xiàn)實生活中的應(yīng)用缺乏必要的了解,對數(shù)學(xué)學(xué)習(xí)缺乏興趣,學(xué)習(xí)效率很低,不少學(xué)生學(xué)習(xí)數(shù)學(xué)純粹是為了應(yīng)付考試,也有一些學(xué)生連考試都懶得應(yīng)付.如何改變這種情況?筆者在測評模式上進行大膽地嘗試,確立“促進學(xué)生學(xué)習(xí)、發(fā)展”的學(xué)生評價新路子,收到了一定的效果.具體模式:“成果展示”與“成果檢驗”結(jié)合模式.操作如下:

學(xué)期伊始,向?qū)W生介紹新測評模式的意義及操作環(huán)節(jié),使學(xué)生明確每一測評環(huán)節(jié)的必要性及測評標準.過程為:課堂成果展示——作業(yè)成果展示——階段成果展示——學(xué)期成果檢驗——學(xué)期成績評定與修正.

1.課堂成果展示

目的:促使學(xué)生認真聽課,認真做好筆記,加強課堂練習(xí),培養(yǎng)學(xué)生良好的課堂習(xí)慣,提高課堂學(xué)習(xí)效率.要求:完整做好課堂筆記,能反映課堂聽、做情況.權(quán)重:15%.

2.作業(yè)成果展示

目的:促使學(xué)生課外認真學(xué)習(xí)思考,獨立練習(xí),鞏固所學(xué)知識,培養(yǎng)學(xué)生自主學(xué)習(xí)的好習(xí)慣. 要求:做自己會做的,努力反映所學(xué)知識點.權(quán)重:15%.

3.階段成果展示

目的: 鞏固提高所學(xué)模塊內(nèi)容,使學(xué)生能由點及面思考問題,解決問題.要求:問題及問題解決要觸及所學(xué)知識點,注意前后知識的聯(lián)系,盡可能聯(lián)系專業(yè)及生活中的實際問題.權(quán)重:20%.

4.學(xué)期成果檢驗

目的:以考促學(xué),以考促練,促使學(xué)生自主消化吸收,強化學(xué)習(xí)成果,檢驗學(xué)生實際掌握所學(xué)內(nèi)容的情況.要求:根據(jù)已有素材,結(jié)合自己實際掌握情況出一份綜合試卷,試卷含基礎(chǔ)部分和應(yīng)用部分,內(nèi)容要反映所學(xué)知識點.學(xué)生完成后老師一一把關(guān),提出完善或修改意見,以使試卷能在規(guī)定時間內(nèi)完成,切實反映學(xué)生實際掌握知識情況.閉卷答題時要求每一題都要有解題過程.權(quán)重:50%.

5.學(xué)期成績修正

每一環(huán)節(jié)分A,B,C,D四個等級,根據(jù)學(xué)生完成情況綜合評定并確定等級分,然后根據(jù)等級情況在班級內(nèi)單項排序、綜合排序,結(jié)合教師平時對學(xué)生的了解及學(xué)生的反映作出局部修正,使成績盡可能反映學(xué)生掌握知識的程度及在班級中的相對位置.

篇7

【關(guān)鍵詞】 素質(zhì)要求 專業(yè)數(shù)學(xué) 教育能力 數(shù)學(xué)教育

高職素質(zhì)教育是中國高等教育面臨深入改革的任務(wù)之一。高職教育要培養(yǎng)全面發(fā)展的高素質(zhì)專業(yè)人才,必須建立培養(yǎng)一批高素質(zhì)的教師隊伍,專業(yè)數(shù)學(xué)教師則是該隊伍中最基本的基礎(chǔ)課教師。只有高素質(zhì)的專業(yè)數(shù)學(xué)教師才能有效的完成專業(yè)數(shù)學(xué)教育的任務(wù),才能增強專業(yè)數(shù)學(xué)學(xué)習(xí)的示范作用,才能真正發(fā)揮專業(yè)數(shù)學(xué)教師的主導(dǎo)作用,才能實現(xiàn)真正意義上的專業(yè)數(shù)學(xué)課程改革與創(chuàng)新。提高專業(yè)數(shù)學(xué)教師的整體素質(zhì),是時代的要求,是學(xué)生的呼喚。

1 政治思想與職業(yè)道德要求

專業(yè)數(shù)學(xué)教師整體素質(zhì)的核心基礎(chǔ)是高尚的政治思想與職業(yè)道德素質(zhì),是最重要的必備素質(zhì)。如在地震等天災(zāi)地害來襲時,教師有義務(wù)和責任在第一時間組織學(xué)生撤離到安全地帶,要求教師平時就應(yīng)具有防范意識,并在心中備有預(yù)案,把學(xué)生的生命放在首位。專業(yè)數(shù)學(xué)教師是塑造人類靈魂的工程師,是促進社會物質(zhì)文明和精神文明的有生力量。在政治思想、道德品質(zhì)上應(yīng)能成為學(xué)生的表率,能潛移默化引導(dǎo)學(xué)生崇尚科學(xué)、堅持真理、用科學(xué)發(fā)展觀看待形形的社會現(xiàn)象。應(yīng)對社會懷有強烈的時代責任感,引導(dǎo)學(xué)生創(chuàng)造精神財富,為創(chuàng)造物質(zhì)財富打下正直的基礎(chǔ)。在專業(yè)數(shù)學(xué)教學(xué)等活動中,應(yīng)用先進的教育觀促進社會進步。

2 專業(yè)數(shù)學(xué)業(yè)務(wù)要求

2.1 專業(yè)數(shù)學(xué)知識要求

首先必須精通數(shù)學(xué)基礎(chǔ)知識,如電類專業(yè)的傅立葉級數(shù)、矩陣、計算機數(shù)學(xué)等。基礎(chǔ)知識通常是在大學(xué)畢業(yè)前就已牢固、熟練掌握的,是任教高職專業(yè)數(shù)學(xué)課程必備的前提條件。其次是必須掌握專業(yè)的一些基本知識概念,如電類專業(yè)的電流變化率、電壓有效值、支路電流法、節(jié)點電壓法等。只有這樣,才能真正將專業(yè)數(shù)學(xué)應(yīng)用在專業(yè)之中,形成特色,激發(fā)學(xué)生學(xué)習(xí)興趣,達到專業(yè)數(shù)學(xué)教學(xué)要求及目標。最后是在任教過程中,通過教學(xué)研究、繼續(xù)教育及時掌握專業(yè)數(shù)學(xué)前沿知識與信息。特別是世界經(jīng)濟和專業(yè)信息技術(shù)的高速發(fā)展,專業(yè)數(shù)學(xué)教師掌握新知識、新信息就越發(fā)顯得重要[1]。

2.2 專業(yè)數(shù)學(xué)能力要求

首先必須具有專業(yè)數(shù)學(xué)學(xué)習(xí)能力,包括接受數(shù)學(xué)新知識的能力和自學(xué)數(shù)學(xué)新知識的能力。只有這樣,才能使自己具有處在時代前列的可能。否則,如何授教新時期一批又一批的年青學(xué)生。其二,必須具有專業(yè)數(shù)學(xué)創(chuàng)新能力,這是綜合運用數(shù)學(xué)知識分析和解決專業(yè)數(shù)學(xué)問題的能力,如電類專業(yè)的周期函數(shù)的頻譜分析能力,如配合專業(yè)課程能設(shè)計并進行案例教學(xué)。只有具備這種能力,才能真正達到專業(yè)數(shù)學(xué)為專業(yè)服務(wù)的目的。其三,必須具有數(shù)學(xué)表現(xiàn)能力,這是運用專業(yè)數(shù)學(xué)語言及符號表述數(shù)學(xué)知識與成果的能力。學(xué)生需要數(shù)學(xué)教師講解知識簡潔、規(guī)范,教育需要數(shù)學(xué)教師出成果并將成果簡明、專業(yè)化的發(fā)表,促進數(shù)學(xué)教育的發(fā)展。最后,必須具有數(shù)學(xué)教育技能。教育學(xué)科知識,如數(shù)學(xué)教育學(xué)、心理學(xué)是專業(yè)數(shù)學(xué)教育技能的基礎(chǔ);專業(yè)數(shù)學(xué)理論知識是為專業(yè)服務(wù)的工具;運用現(xiàn)代化技術(shù)教育,是現(xiàn)今計算機與網(wǎng)絡(luò)時代的一個基本技能;實事求是進行自我數(shù)學(xué)教育評價和教育能力評價是總結(jié)教育成敗經(jīng)驗、不斷提高自我數(shù)學(xué)教育水平、強化數(shù)學(xué)教育質(zhì)量的一項不可或缺的技術(shù)能力[2]。

3 專業(yè)數(shù)學(xué)情意要求

專業(yè)數(shù)學(xué)教師是數(shù)學(xué)思想的啟迪者,是數(shù)學(xué)思維的開拓者,是數(shù)學(xué)精神的引導(dǎo)者,同時還是數(shù)學(xué)風格、情感、意志的塑造者。專業(yè)數(shù)學(xué)教學(xué)工作不僅僅是一個學(xué)年完成教學(xué)任務(wù)360課時這么簡單,還要求在數(shù)學(xué)教學(xué)中,教師用對教育工作的熱愛之情,用對學(xué)生的關(guān)愛之意,進行言傳身教,不時滲透德育思想,通過教師自我的表率作用影響學(xué)生,感動學(xué)生。在高職院校實際錄取最低分數(shù)線逐年降低和單獨招生的形式下,在實施教學(xué)任務(wù)的同時更需要融入對學(xué)生的情感,使教學(xué)和育人和諧、順利展開。別說360課時,就是對90分鐘一次課也不可輕言完成好了本次本職工作,單說"填鴨式"教育轉(zhuǎn)變成素質(zhì)教育就是一個大課題。每次課都需要有強烈的責任感,都應(yīng)為學(xué)生想,為家長想,為學(xué)校想,為自己在竟爭機制中的如何發(fā)展與提高想[3]。每一次數(shù)學(xué)課的教學(xué)品行、數(shù)學(xué)情意對學(xué)生學(xué)習(xí)專業(yè)數(shù)學(xué)的興趣起著重要的導(dǎo)向作用,對學(xué)生人格、情感品質(zhì)起著潛移默化的作用,對提高學(xué)生的電類專業(yè)數(shù)學(xué)認知水平有著深遠的影響作用,對保持數(shù)學(xué)教師自己探求科學(xué)的激情起著自我暗示作用。

4 專業(yè)數(shù)學(xué)科研要求

專業(yè)數(shù)學(xué)科學(xué)研究對數(shù)學(xué)教學(xué)工作的指導(dǎo)作用已逐步被廣大數(shù)學(xué)教師所接受,教書匠現(xiàn)早已成為教師過時的稱號,教師應(yīng)當成為不僅是有教學(xué)能力還更有教育能力和科研能力的教育家、研究者[4]。這就要求專業(yè)數(shù)學(xué)教師在教學(xué)過程中,從專業(yè)需要出發(fā),探究專業(yè)數(shù)學(xué)理論及教學(xué)實踐中各種問題,對積累的經(jīng)驗進行總結(jié),對自身意識進行反思,形成特點、規(guī)律性的認識。這主要是靠專業(yè)數(shù)學(xué)教師自己形成自發(fā)性、鉆研性、耐久性的探究活動,輔以政策的支持來完成,教師因始終站在本專業(yè)社會發(fā)展的前線,結(jié)合本校的改革主題探究教學(xué)。這是當今社會評價教師素質(zhì)能力的一個重要方面,形成科研與教學(xué)相互促進的激勵作用[5]。

5 結(jié)束語

專業(yè)數(shù)學(xué)教師要滿足上述素質(zhì)要求,需要不斷刻苦學(xué)習(xí),努力提高,積極主動進行各類培訓(xùn);需要加強數(shù)學(xué)教師間的相互探討,相互啟發(fā),取長補短,形成團隊意識;需要加強與專業(yè)教師的協(xié)作,要經(jīng)常有意識的求訪專業(yè)部門的教學(xué)管理層,要與專業(yè)教師溝通協(xié)調(diào),形成共識;需要有良好、健康的身體狀況和活潑開朗的優(yōu)良性格。

參考文獻

[1] 冷萬芬,皮磊.現(xiàn)代信息化社會與數(shù)學(xué)教師素質(zhì)[J].河南機電高等專科學(xué)校學(xué)報,2006,14(2):105-106.

[2] 王昕,劉艷.論創(chuàng)新教育下的高等數(shù)學(xué)教學(xué)[J].教育與職業(yè),2009,(6):189-190.

[3] 宋立溫.高職院校數(shù)學(xué)教師應(yīng)具備素質(zhì)的認識與探索[J].中國成人教育,2008,(2):84-85.

篇8

(一)數(shù)學(xué)教育的地位和作用

數(shù)學(xué)與人類文明、與人類文化有著密切的關(guān)系。數(shù)學(xué)在人類文明的進步和發(fā)展中,一直在文化層面上發(fā)揮著重要的作用。數(shù)學(xué)不僅是一種重要的工具或方法,也是一種思維模式,即數(shù)學(xué)方式的理性思維;數(shù)學(xué)不僅是一門科學(xué),也是一種文化,即數(shù)學(xué)文化;數(shù)學(xué)不僅是一些知識,也是一種素質(zhì),即數(shù)學(xué)素質(zhì)。數(shù)學(xué)訓(xùn)練在提高人的推理能力、抽象能力、分析能力和創(chuàng)造能力上,是其他訓(xùn)練難以替代的。數(shù)學(xué)素質(zhì)是人的文化素質(zhì)的一個重要方面。數(shù)學(xué)的思想、精神、方法,從數(shù)學(xué)角度看問題的著眼點、處理問題的條理性、思考問題的嚴密性,這些對人的綜合素質(zhì)的提高都有不可或缺的作用。較高的數(shù)學(xué)修養(yǎng),無論在古代還是在現(xiàn)代,無論對科技工作者還是企業(yè)管理者,無論對各行業(yè)的工作人員還是政府公務(wù)員,都是十分有益的。隨著知識經(jīng)濟時代和信息時代的到來,數(shù)學(xué)更是無處不在。各個領(lǐng)域中許多研究對象的數(shù)量化趨勢愈發(fā)加強,數(shù)學(xué)結(jié)構(gòu)的聯(lián)系愈發(fā)重要,再加上計算機的普及和應(yīng)用,給我們一個現(xiàn)實的啟示:每一個有較高文化素質(zhì)的現(xiàn)代人,都應(yīng)當具備一定的數(shù)學(xué)素質(zhì)。因此,數(shù)學(xué)教育對所有專業(yè)的大學(xué)生來說,都必不可少。

(二)高職數(shù)學(xué)課程教學(xué)效果分析

高職數(shù)學(xué)課程的設(shè)置沿襲普通高教數(shù)學(xué)課程的模式,忽略了職業(yè)教育的社會經(jīng)濟功能,如《經(jīng)濟數(shù)學(xué)》課程的數(shù)學(xué)理論較深,在旅游、經(jīng)貿(mào)、商務(wù)等專業(yè)中與專業(yè)課程銜接不緊密,滲透力度淺,教師的教學(xué)方法呆板,以課堂純理論講授為主,“滿堂灌”現(xiàn)象普遍,況且高職學(xué)生的生源較普通高等教育的基礎(chǔ)差,學(xué)生容易對數(shù)學(xué)產(chǎn)生懼怕心理,數(shù)學(xué)教學(xué)效果不盡人意。有些高職院校教學(xué)計劃中干脆不設(shè)置數(shù)學(xué)課,或數(shù)學(xué)課作為選修課,這對人才培養(yǎng)的綜合素質(zhì)提高極為不利。陳舊的數(shù)學(xué)考試模式能制約教學(xué)模式的改革,影響數(shù)學(xué)教學(xué)目標的實現(xiàn)。因此改革數(shù)學(xué)考試模式,轉(zhuǎn)變數(shù)學(xué)學(xué)習(xí)評價標準,將在一定程度上解決上述存在的問題。

二、高職數(shù)學(xué)課程考試模式現(xiàn)狀及存在的問題

考試會影響學(xué)生對學(xué)習(xí)內(nèi)容和學(xué)習(xí)方式的選擇,與高職教育的人才培養(yǎng)目標相比較,現(xiàn)階段高職數(shù)學(xué)課程的考試模式存在諸多弊端,主要體現(xiàn)在以下幾方面。

(一)考試功能異化

目前數(shù)學(xué)考試與其他學(xué)科一樣強調(diào)考試的評價功能,其表現(xiàn)主要體現(xiàn)在對分數(shù)的價值判斷上,過分夸大分數(shù)的價值功能,強調(diào)分數(shù)的能級表現(xiàn),只重分數(shù)的多少,這樣只能使教師為考試而教,學(xué)生為考試而學(xué)。考試功能的片面化必然導(dǎo)致教學(xué)的異化──師生教學(xué)僅為考試服務(wù),考試就意味著課程的終結(jié)。這種考試只能部分反映出學(xué)生的數(shù)學(xué)素質(zhì),甚至只是反映了學(xué)生的應(yīng)試能力,并使學(xué)生的這一方面能力片面膨脹,其他素質(zhì)缺失。

(二)考試內(nèi)容不合理

數(shù)學(xué)考試內(nèi)容大多局限于教材中的基本理論知識和基本技能,就高職教學(xué)特點來講,數(shù)學(xué)的應(yīng)用性內(nèi)容欠缺,數(shù)學(xué)理論性要求偏高,過多強調(diào)數(shù)學(xué)邏輯的嚴密性,思維的嚴謹性,遇到實際問題,不知如何用數(shù)學(xué),教學(xué)的結(jié)果仍是以知識傳播作為人才培養(yǎng)的途徑,考試僅僅是對學(xué)生知識點的考核,應(yīng)用能力、分析與解決問題能力的培養(yǎng)仍得不到驗證。

(三)考試方式單一

數(shù)學(xué)考試模式長期以來基本上是教師出各種題型的試題,學(xué)生在規(guī)定時間內(nèi)閉卷筆試完成。理論考試多,應(yīng)用測試少;標準答案試題多,不定答案的分析試題少。很多學(xué)生采取搞題海戰(zhàn)術(shù)的方法應(yīng)付,忽視了掌握數(shù)學(xué)學(xué)科的思維素質(zhì)。

(四)數(shù)學(xué)考試成績不理想

高職數(shù)學(xué)的考試模式與教學(xué)模式以及學(xué)生層次的復(fù)雜,使學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性和效果不理想,造成數(shù)學(xué)成績不合格率在文化基礎(chǔ)課中占領(lǐng)先地位。2004學(xué)年,我對所在學(xué)院招收的高職新生第一學(xué)期《高等數(shù)學(xué)》課程的期末考試成績作了統(tǒng)計,結(jié)果90~100分占3.8%,80~89分占10.1%,70~79分占20.5%,60~69分占28.9%,60分以下占36.7%。學(xué)生在消極和被動中應(yīng)付考試,教學(xué)效果很不理想。

三、高職數(shù)學(xué)課程考試模式改革與實踐

根據(jù)高職教育對人才培養(yǎng)的目標,高職數(shù)學(xué)教學(xué)要求體現(xiàn)“以應(yīng)用為目的,重視創(chuàng)新,提高素質(zhì)”的原則,在以“能力為本位”的教學(xué)理念下,數(shù)學(xué)考試模式的改革很有必要,幾年來,我在教學(xué)實踐中對考試模式作了摸索,取得一定效果。

(一)引用“一頁開卷”模式

近年來,一些高校試行了“一頁開卷”考試模式。該考試模式在北美一些國家較為流行,所謂“一頁開卷”是允許學(xué)生在考試時攜帶一張A4紙,在這張紙上寫下自己認為最重要的知識點或典型例題解法,要求只能手寫不能復(fù)印,考試結(jié)束時,這張紙連同考卷一起上交,并且這張紙上所記錄的內(nèi)容也將被閱卷老師作為打分的一項參考。學(xué)生認為,這種考試辦法,至少減輕了許多心理壓力,不用再死記硬背那些數(shù)學(xué)公式(如積分、微分、導(dǎo)數(shù)公式等),學(xué)生在總結(jié)這張紙的過程,就是對知識的總結(jié),等于把厚厚的書讀薄了。同時也承認,單靠一張紙上的東西是無論如何也應(yīng)付不了考試的,尤其對數(shù)學(xué)學(xué)科來說,思維素質(zhì)是最重要的。

(二)學(xué)生出試卷模式

學(xué)生懼怕考試,似乎是天經(jīng)地義的事,然而,對考試的畏難情緒緣于試卷的“神秘”度,正是這種對試卷的神秘度引發(fā)了心理壓力。學(xué)生自己出試卷的模式完全減輕了學(xué)生的這種心理負擔,激發(fā)了考試的興趣與復(fù)習(xí)的積極性,教學(xué)效果明顯提高。具體做法是:

(1)教師宣布學(xué)生出題的考試模式,學(xué)生的興奮度即刻替代了考試的緊張感。

(2)每個學(xué)生必須出一份試卷,并做好標準答案交于老師。這一過程保證了學(xué)生對知識點的復(fù)習(xí)功效,為了能出好卷,并提供正確答案,不得不把知識吃透。

(3)考試試卷的題目將在全班學(xué)生試卷中抽取,向?qū)W生承諾試卷的全部內(nèi)容是班內(nèi)學(xué)生試卷的原題,但被抽到學(xué)生的題目最多一題。

(4)考試評分30%以學(xué)生本人試卷的質(zhì)量計,70%以統(tǒng)一試卷考試成績計。

這種考試模式提倡了學(xué)生的學(xué)習(xí)自主性,激發(fā)了學(xué)習(xí)積極性,并增加了學(xué)生互相交流學(xué)習(xí)的機會。考試結(jié)果與沒采用這一模式的前一單元比,平均分提高了8.46分,合格率提高了6.7%。

(三)課程形成性考核與論文相結(jié)合模式

聯(lián)合國教科文組織提出21世紀教育的四大支柱:培養(yǎng)學(xué)生學(xué)會認知(learningtoknow),學(xué)會做事(learningtodo),學(xué)會合作(learningtolivetogether),學(xué)會生存(learningtobe)”。我們在課程教學(xué)和考核中應(yīng)該且必須貫徹實施。數(shù)學(xué)教學(xué)如何應(yīng)用于社會經(jīng)濟建設(shè),是評價數(shù)學(xué)教學(xué)的標準,所以高職數(shù)學(xué)課程《高等數(shù)學(xué)》《經(jīng)濟數(shù)學(xué)》的教學(xué)評價方式即考試模式,應(yīng)該與學(xué)生的實際解決問題能力相掛鉤,以下是“30%課堂教學(xué)+70%知識應(yīng)用能力”的考試模式。

學(xué)生學(xué)習(xí)數(shù)學(xué)過程的考核。把學(xué)生的聽課出勤率,上課提問、回答,作業(yè)完成情況形成考核內(nèi)容之一,占數(shù)學(xué)成績的30%。

學(xué)生知識應(yīng)用能力考核。教師要求學(xué)生獨立或小于3人合作,走向企事業(yè)單位完成所學(xué)知識應(yīng)用的調(diào)查報告、論文或企業(yè)生產(chǎn)方案論證報告,在寒假完成,上交后作獨立論文答辯,以查驗合作組成員參與投入度與數(shù)學(xué)基本知識的掌握情況。如《經(jīng)濟數(shù)學(xué)》課程,在課堂學(xué)會基本數(shù)學(xué)方法后,教師要求學(xué)生就如何利用極限、導(dǎo)數(shù)、微積分知識進行對利率問題、投資問題、經(jīng)濟優(yōu)化問題、產(chǎn)品成本與利潤邊際問題、市場銷售策劃等方面的調(diào)查報告或論文,并要求必須有數(shù)據(jù)與事例分析,防止純理論抄襲。論文的質(zhì)量與答辯情況占數(shù)學(xué)成績的70%。

這種考試模式,開始階段學(xué)生非常贊同,因為在表面上取消了坐下來考試這一關(guān),隨著過程實施的體驗,學(xué)生中會出現(xiàn)畏難情緒,有些學(xué)生不知如何邁開第一步,在教師的指導(dǎo)幫助和與同學(xué)的相互交流合作下,他們逐步學(xué)會了合作探究和解決問題的方法。這一模式試驗結(jié)果表明:11%的學(xué)生能較優(yōu)秀完成,且對金融類業(yè)務(wù)已較為熟悉;56%的學(xué)生能基本通過論文答辯,已對經(jīng)濟數(shù)學(xué)知識基本掌握;33%的學(xué)生的論文質(zhì)量與答辯情況不是很理想,其原因有對數(shù)學(xué)知識理解不夠深透,知識應(yīng)用能力,人際交往能力等能力的缺乏,也有12年中小學(xué)應(yīng)試教育的慣性。

然而,這一模式不同程度培養(yǎng)和鍛煉了學(xué)生對知識的理解和分析能力、應(yīng)用能力,有利于解決問題能力、社會調(diào)查、交往能力等綜合素質(zhì)的提高。由單純考核課程的知識轉(zhuǎn)變?yōu)橹R、能力和綜合素質(zhì)的考核。

四、考試模式改革引發(fā)的思考

考試模式的改革是一個系統(tǒng)工程,涉及到教育系統(tǒng)的方方面面,如果僅僅就考試模式本身進行改革,相關(guān)的系統(tǒng)原封不動,改革必然失敗,所以,確立新的教學(xué)目標,改革傳統(tǒng)的教學(xué)模式是推進考試方法的改革,完善考試制度與評價體系的關(guān)鍵和保證。因此,考試模式的改革應(yīng)該是一個循序漸進的多樣化的不斷實踐和不斷完善的過程。

參考文獻

[1]盧曉東等.北京大學(xué)本科考試模式改革的研究[J].高等理科教育,1999(4).

[2]劉玉富.關(guān)于改革高職教育考核方法的思考[J].遼寧商務(wù)職業(yè)學(xué)院學(xué)報,2003(3).

篇9

關(guān)鍵詞: 高職院校 數(shù)學(xué)實驗室 建設(shè)

數(shù)學(xué)實驗室在高職院校中的意義在于為師生提供了一個將數(shù)學(xué)理論知識轉(zhuǎn)化為實際應(yīng)用的平臺,并且能夠?qū)芏嗪玫膭?chuàng)意進行實踐驗證和研究。關(guān)于數(shù)學(xué)實驗室建設(shè)的必要性,很多論文和著作中已經(jīng)講得十分清楚,這里就不再贅述。下面,關(guān)于在數(shù)學(xué)實驗室建設(shè)過程中需要注意的幾個方面,筆者將進行詳細的闡述。

一、高職院校數(shù)學(xué)實驗室的研究內(nèi)容

關(guān)于高職院校數(shù)學(xué)實驗室研究方向和研究內(nèi)容的設(shè)定,是一個關(guān)系到高校資源分配和有效利用的話題。首先,數(shù)學(xué)實驗室是為師生服務(wù)的,必須能夠提供一定的教學(xué)支持。比如,對高等數(shù)學(xué)中的常見數(shù)學(xué)軟件的教學(xué)和應(yīng)用,如MATLAB、ANSYS和Math CAD等軟件的開發(fā)和應(yīng)用等,能夠為日常的數(shù)學(xué)教學(xué)提供一定的支持和幫助。其次,高職院校的數(shù)學(xué)實驗室必須能夠承接一些基礎(chǔ)的數(shù)學(xué)研究課題,這也是高校實驗室存在的一個重要理由和重要作用。例如,實驗室承接一些數(shù)學(xué)分析工作,運用計算機技術(shù)為實際問題例如力學(xué)項目分析、空氣流場分析等提供數(shù)學(xué)分析解決方案。再者,數(shù)學(xué)實驗室能夠為師生的一些數(shù)學(xué)創(chuàng)意提供施展和研究的場所。師生在教與學(xué)的過程中,產(chǎn)生一些比較好的想法或者創(chuàng)意,能夠在數(shù)學(xué)實驗室中調(diào)動一定的資源驗證自己的想法,發(fā)揮數(shù)學(xué)實驗室應(yīng)有的功能。

數(shù)學(xué)實驗室作為高職院校的科研投入,不僅承接了外部的科研項目,而且為師生提供了施展自己才華的場所,這一切構(gòu)成了高校數(shù)學(xué)實驗室的研究內(nèi)容,同時也是其存在的價值和發(fā)展的內(nèi)在動力。

二、高職院校數(shù)學(xué)實驗室的管理規(guī)范

在現(xiàn)代化的數(shù)學(xué)實驗室體系中,往往將數(shù)學(xué)與計算機緊密聯(lián)系在一起,從而發(fā)揮出更大的作用。如何進行實驗室的規(guī)范化管理,如何進行實驗室的日常維護,師生如何有序地進行數(shù)學(xué)實驗的開展,都成為亟待解決的問題。

當數(shù)學(xué)與計算機結(jié)合在一起,通過模擬的方式進行數(shù)學(xué)研究,那么對于計算機本身的維護就成為一項重要工作,對數(shù)學(xué)實驗室的維護很大程度上體現(xiàn)在了對計算機及其相關(guān)軟硬件的日常維護和正確使用。例如,在數(shù)學(xué)實驗室中應(yīng)該存在一個內(nèi)部局域網(wǎng)絡(luò)方便數(shù)據(jù)在實驗室內(nèi)部進行快捷的傳遞,而這個局域網(wǎng)必須與外部網(wǎng)絡(luò)進行有效隔離以免受到計算機病毒或者其他不利于計算機信息安全的軟件乘虛而入。在很多的數(shù)學(xué)實驗室中,是嚴禁利用U盤進行數(shù)學(xué)的拷貝,以免U盤中帶有病毒進而污染實驗室中的計算機。如果需要數(shù)據(jù)的傳遞或?qū)耄涂梢岳帽容^安全可靠的光盤進行相關(guān)操作。

數(shù)學(xué)實驗室作為師生進行相關(guān)課程講解的場所,必須能夠通過軟件進行統(tǒng)一管理,學(xué)生在上課過程中的行為必須規(guī)范,達到保護實驗室重要資源的效果。通常做法是將老師用的計算機作為一個主控制器對所有學(xué)生計算機進行統(tǒng)一控制,這樣方便老師進行教學(xué)和學(xué)生當場練習(xí)并交作業(yè)。這種情況下將數(shù)學(xué)實驗室作為一個特殊的教室,學(xué)生的課堂行為也必須進行一定程度的規(guī)范,例如不能利用實驗室的計算機進行游戲、不能利用實驗室的計算機進行聊天等。

如果把數(shù)學(xué)實驗室當成一個科研的場所,就必須按照科研的管理方法進行管理。首先,高職院校的數(shù)學(xué)實驗室為公共實驗室,如果某一個課題組需要利用數(shù)學(xué)實驗室資源進行科研活動,就必須進行相關(guān)的實驗方案和實驗進度安排的申請。其次,在使用過程中,必須遵守實驗室使用的規(guī)章制度,嚴禁在科研期間進行非科研活動。最后,實驗室需對在實驗室進行科研的項目進行統(tǒng)一管理,使實驗室資源得到更高效的利用,從整體上把握投入和產(chǎn)出的比值,更好地為學(xué)校的科研活動服務(wù)。

數(shù)學(xué)實驗室作為師生施展數(shù)學(xué)才華的場所,也需要一定的規(guī)范以保證師生的創(chuàng)意能夠安全并且高效進行。例如,一個學(xué)生提出一種新的計算抽樣方法和新的概率計算方法,需要在數(shù)學(xué)實驗室中進行該想法的驗證。第一步,學(xué)生需要將自己的想法進行書面的表達并且經(jīng)相關(guān)指導(dǎo)老師進行項目可行性分析,如果理論可行,那么可以將此方案提交至數(shù)學(xué)實驗室,由數(shù)學(xué)實驗室的老師提供場地和相關(guān)資源。第二步,學(xué)生需要進行相關(guān)的編程工作但是自己不會,需要數(shù)學(xué)實驗室中的老師幫忙,實驗室老師就會盡自己的努力教會學(xué)生如何進行相關(guān)軟件的應(yīng)用和編程工作,以實現(xiàn)學(xué)生的想法。

三、高職院校數(shù)學(xué)實驗室與其他學(xué)科的聯(lián)系

高職院校數(shù)學(xué)實驗室在建設(shè)的過程中,不僅能夠?qū)?shù)學(xué)學(xué)科本身的建設(shè)和發(fā)展起到十分重要的作用,對其他相關(guān)學(xué)科也能夠起到十分重大的幫助作用,這是由數(shù)學(xué)作為一個工具學(xué)科的性質(zhì)所決定的。

物理學(xué)中常常用到微積分的理論進行公式的推導(dǎo)及問題的解決,這一點在熱、電、空氣動力學(xué)方面有十分廣泛的應(yīng)用;而當物理學(xué)的尺度進入微觀的量子力學(xué),又對概率學(xué)產(chǎn)生很強力的依賴;化學(xué)中的分子動力學(xué)尤其是大分子的分子運動也往往依靠數(shù)學(xué)的方法進行理論推導(dǎo);經(jīng)濟學(xué)對于數(shù)學(xué)的依賴更是不言而喻,經(jīng)濟學(xué)的發(fā)展正是利用數(shù)學(xué)公式的表達展現(xiàn)出人類經(jīng)濟發(fā)展過程中人類的理性。總而言之,許多學(xué)科都對數(shù)學(xué)有著強烈的依賴,那么這些學(xué)科的部分實驗也可以移到數(shù)學(xué)實驗室中進行數(shù)學(xué)模型的推導(dǎo)和計算,事實上,物理學(xué)或者化學(xué)在發(fā)展的過程中,為了解決問題,也發(fā)明了一些特殊的數(shù)學(xué)方法,這在很大程度上幫助了數(shù)學(xué)學(xué)科進行知識體系的完善。因此,數(shù)學(xué)實驗室應(yīng)該在一定程度上對其他相關(guān)學(xué)科開放,達到共同進步、共同提高的目的。

高職院校中的數(shù)學(xué)實驗室建設(shè)是一件對數(shù)學(xué)學(xué)科本身影響深遠的事件,不僅能夠提供一定的科研環(huán)境和教學(xué)場地,而且能夠為師生的創(chuàng)意提供實現(xiàn)平臺。在進行數(shù)學(xué)實驗室建設(shè)的同時,需要對其他相關(guān)學(xué)科在一定程度上開放,這樣才能做到互相支持和共同提高。

參考文獻:

篇10

【實數(shù)的分類】

【自然數(shù)】 表示物體個數(shù)的1、2、3、4···等都稱為自然數(shù)

【質(zhì)數(shù)與合數(shù)】

一個大于1的整數(shù),如果除了它本身和1以外不能被其它正整數(shù)所整除,那么這個數(shù)稱為質(zhì)數(shù)。一個大于1的數(shù),如果除了它本身和1以外還能被其它正整數(shù)所整除,那么這個數(shù)知名人士為合數(shù),1既不是質(zhì)數(shù)又不是合數(shù)。

【相反數(shù)】只有符號不同的兩個實數(shù),其中一個叫做另一個的相反數(shù)。零的相反數(shù)是零。

【絕對值】

一個正數(shù)的絕對值是它本身,一個負數(shù)絕對值是它的相反數(shù),零的絕對值為零。

從數(shù)軸上看,一個實數(shù)的絕對值是表示這個數(shù)的點離開原點距離。

【倒數(shù)】 1除以一個非零實數(shù)的商叫這個實數(shù)的倒數(shù)。零沒有倒數(shù)。

【完全平方數(shù)】如果一個有理數(shù)a的平方等于有理數(shù)b,那么這個有理數(shù)b叫做完全平方數(shù)。

【方根】如果一個數(shù)的n次方(n是大于1的整數(shù))等于a,這個數(shù)叫做a的n次方根。