光通信論文范文
時間:2023-03-27 06:16:58
導語:如何才能寫好一篇光通信論文,這就需要搜集整理更多的資料和文獻,歡迎閱讀由公務員之家整理的十篇范文,供你借鑒。
篇1
1光纖模型
對于一些較為復雜的矢量信息的調制,光通信系統當中則一般都是用IQ調制器進行;光纖模型是為了將通信相干系統內處理數字信號進行提高,因此必須要具體研究整個系統內信號進行光纖傳輸的現象,而該現象則需要從物理以及數學的模型當中入手,對對應的補償或均衡技術進行研究過程中將數字信號處理技術的作用發揮出來,使得光信號變換成為電磁波的形式,具體的解是在麥克斯韋方程組導出的波動方程中進行的,表達式是:其中X是信號偏振方向的單位向量,是初始振幅的傅立葉表示,是常數,最終將光信號基態模式分布成F(x,y)看成是近似高斯函數。另外在研究接收端過程中,一般都是將光相干接收機作為主要組成進行研究,其能夠對接收機進行直接測探,讓所檢測的信號強度信息得以增強,同時還能夠將強度調制信號進行光電轉換前對其進行除匹配濾波之外的處理。
2信號處理
研究相干光通信系統內處理數字信號的技術主要是:光纖信道是信號進行傳輸的通道,而其中所出現的不同形式的失真或者損傷就會在結合過程中出現線性或者非線性的失真。而線性失真的補償是不存在因果關系,即無需顧慮其順序問題,不過需要在具體算法當中遵循以下原則:分離所需估計的線性失真為單獨形式的變量,并補償態應該優先估計,對于算法較為簡單的變量,然后再補償隨機變量,最后才是對所有變量進行完整補償。算法流程:每個方框所代表的都是相干接收機內的數字信號處理系統的子系統,且子系統之間所可能出現的反饋線路的具體圖表也要進行表示,在預處理算法的研究中,它是指在進行實質的信道均衡、載波恢復之前,對采樣后的信號進行一定程度的預先處理,為形成數字信號處理算法做出充分的準備。
3信號補償
使用數字信號處理算法之后,相干光通信系統對信號補償是在接收端,具體使用過程當中則會根據情況的不同來使用不同形式的數字信號處理子系統。去偏移系統可以針對偏振之間的采樣時刻偏移進行補償。正交化系統可以補償因調制器和混頻器缺陷造成的欠正交狀況。歸一化系統能夠將信號具備單位的能力和幅度,進而使得信號發生色度色散后可利用靜態信道的均衡系統對其進行補償。即使出現不當采樣而導致誤差出現時,也能夠使用采樣時鐘來對系統進行相關補償。即自適應的信道均衡系統能夠對于偏振所出現的相關損傷進行補償,載波相位回復系統是估計載波相位的噪聲,進而對所出現的失真進行補償。載波頻率恢復系統則是對發送端和接收端之間載波所出現的頻率偏移進行補償和估計。對于光線非線性造成的信號損傷可以借助非線性補償系統進行補償。
4相關耦合
在應用數字信號處理算法過程當中,先在接收端破和所輸入的光信號和本振光,進而根據上述的數字信號處理技術子系統來對所耦合的光信號進行模數轉化、去偏移以及正交化恢復等處理,然后根據實際的應用環境來選擇具體形式的反饋和補償。即相干光通信系統中有了數字信號處理算法的應用將會對其色散、偏振等造成的信號失真有了非常有效的補償,進而更好的促進了相干光通信系統的發展。
二、小結
篇2
[論文摘要]光纖通信因其具有的損耗低、傳輸頻帶寬、容量大、體積小、重量輕、抗電磁干擾、不易串音等優點,備受業內人士青睞,發展非常迅速。目前,光纖光纜已經進入了有線通信的各個領域,包括郵電通信、廣播通信、電力通信和軍用通信等領域。綜述我國光纖通信研究現狀及其發展。
近年來,光纖通信技術得到了長足的發展,新技術不斷涌現,這大幅提高了通信能力,并使光纖通信的應用范圍
不斷擴大。
一、我國光纖光纜發展的現狀
(一)普通光纖
普通單模光纖是最常用的一種光纖。隨著光通信系統的發展,光中繼距離和單一波長信道容量增大,G.652.A光纖的性能還有可能進一步優化,表現在1550rim區的低衰減系數沒有得到充分的利用和光纖的最低衰減系數和零色散點不在同一區域。符合ITUTG.654規定的截止波長位移單模光纖和符合G.653規定的色散位移單模光纖實現了這樣的改進。
(二)核心網光纜
我國已在干線(包括國家干線、省內干線和區內干線)上全面采用光纜,其中多模光纖已被淘汰,全部采用單模光纖,包括G.652光纖和G.655光纖。G.653光纖雖然在我國曾經采用過,但今后不會再發展。G.654光纖因其不能很大幅度地增加光纖系統容量,它在我國的陸地光纜中沒有使用過。干線光纜中采用分立的光纖,不采用光纖帶。干線光纜主要用于室外,在這些光纜中,曾經使用過的緊套層絞式和骨架式結構,目前已停止使用。
(三)接入網光纜
接入網中的光纜距離短,分支多,分插頻繁,為了增加網的容量,通常是增加光纖芯數。特別是在市內管道中,由于管道內徑有限,在增加光纖芯數的同時增加光纜的光纖集裝密度、減小光纜直徑和重量,是很重要的。接入網使用G.652普通單模光纖和G.652.C低水峰單模光纖。低水峰單模光纖適合于密集波分復用,目前在我國已有少量的使用。
(四)室內光纜
室內光纜往往需要同時用于話音、數據和視頻信號的傳輸。并目還可能用于遙測與傳感器。國際電工委員會(IEC)在光纜分類中所指的室內光纜,筆者認為至少應包括局內光纜和綜合布線用光纜兩大部分。局用光纜布放在中心局或其他電信機房內,布放緊密有序和位置相對固定。綜合布線光纜布放在用戶端的室內,主要由用戶使用,因此對其易損性應比局用光纜有更嚴格的考慮。
(五)電力線路中的通信光纜
光纖是介電質,光纜也可作成全介質,完全無金屬。這樣的全介質光纜將是電力系統最理想的通信線路。用于電力線桿路敷設的全介質光纜有兩種結構:即全介質自承式(ADSS)結構和用于架空地線上的纏繞式結構。ADSS光纜因其可以單獨布放,適應范圍廣,在當前我國電力輸電系統改造中得到了廣泛的應用。ADSS光纜在國內的近期需求量較大,是目前的一種熱門產品。
二、光纖通信技術的發展趨勢
對光纖通信而言,超高速度、超大容量和超長距離傳輸一直是人們追求的目標,而全光網絡也是人們不懈追求的夢想。
(一)超大容量、超長距離傳輸技術波分復用技術極大地提高了光纖傳輸系統的傳輸容量,在未來跨海光傳輸系統中有廣闊的應用前景。近年來波分復用系統發展迅猛,目前1.6Tbit/的WDM系統已經大量商用,同時全光傳輸距離也在大幅擴展。提高傳輸容量的另一種途徑是采用光時分復用(OTDM)技術,與WDM通過增加單根光纖中傳輸的信道數來提高其傳輸容量不同,OTDM技術是通過提高單信道速率來提高傳輸容量,其實現的單信道最高速率達640Gbit/s。僅靠OTDM和WDM來提高光通信系統的容量畢竟有限,可以把多個OTDM信號進行波分復用,從而大幅提高傳輸容量。偏振復用(PDM)技術可以明顯減弱相鄰信道的相互作用。由于歸零(RZ)編碼信號在超高速通信系統中占空較小,降低了對色散管理分布的要求,且RZ編碼方式對光纖的非線性和偏振模色散(PMD)的適應能力較強,因此現在的超大容量WDM/OTDM通信系統基本上都采用RZ編碼傳輸方式。WDM/OTDM混合傳輸系統需要解決的關鍵技術基本上都包括在OTDM和WDM通信系統的關鍵技術中。
(二)光孤子通信。光孤子是一種特殊的ps數量級的超短光脈沖,由于它在光纖的反常色散區,群速度色散和非線性效應相互平衡,因而經過光纖長距離傳輸后,波形和速度都保持不變。光孤子通信就是利用光孤子作為載體實現長距離無畸變的通信,在零誤碼的情況下信息傳遞可達萬里之遙。
光孤子技術未來的前景是:在傳輸速度方面采用超長距離的高速通信,時域和頻域的超短脈沖控制技術以及超短脈沖的產生和應用技術使現行速率10~20Gbit/s提高到100Gbit/s以上;在增大傳輸距離方面采用重定時、整形、再生技術和減少ASE,光學濾波使傳輸距離提高到100000km以上;在高性能EDFA方面是獲得低噪聲高輸出EDFA。當然實際的光孤子通信仍然存在許多技術難題,但目前已取得的突破性進展使人們相信,光孤子通信在超長距離、高速、大容量的全光通信中,尤其在海底光通信系統中,有著光明的發展前景。
(三)全光網絡。未來的高速通信網將是全光網。全光網是光纖通信技術發展的最高階段,也是理想階段。傳統的光網絡實現了節點間的全光化,但在網絡結點處仍采用電器件,限制了目前通信網干線總容量的進一步提高,因此真正的全光網已成為一個非常重要的課題。
全光網絡以光節點代替電節點,節點之間也是全光化,信息始終以光的形式進行傳輸與交換,交換機對用戶信息的處理不再按比特進行,而是根據其波長來決定路由。
目前,全光網絡的發展仍處于初期階段,但它已顯示出了良好的發展前景。從發展趨勢上看,形成一個真正的、以WDM技術與光交換技術為主的光網絡層,建立純粹的全光網絡,消除電光瓶頸已成為未來光通信發展的必然趨勢,更是未來信息網絡的核心,也是通信技術發展的最高級別,更是理想級別。
三、結語
光通信技術作為信息技術的重要支撐平臺,在未來信息社會中將起到重要作用。雖然經歷了全球光通信的“冬天”但今后光通信市場仍然將呈現上升趨勢。從現代通信的發展趨勢來看,光纖通信也將成為未來通信發展的主流。人們期望的真正的全光網絡的時代也會在不遠的將來到來。
參考文獻:
[1]辛化梅、李忠,論光纖通信技術的現狀及發展[J].山東師范大學學報(自然科學版),2003,(04)
篇3
(1)在電力通信中,完成通信需要多個設備的參與,而這主要是由于設備的性質不同、功能不同,且所承擔的任務也不同,因此,這就使得電力系統通信網絡結構復雜,由于傳統的通信已無法適應電力系統通信網絡發展的要求,因此,把光纖通信作為介質,提高通信質量也就成為一種趨勢。(2)電力通信與其它通信之間的區別在于,其不僅對傳輸信息質量要求高,而且在通信實時性方面有著較高要求。隨著中國經濟社會發展的轉型升級,電網規模的擴大,通信信號的種類日漸繁雜,同樣要求在電力系統通信領域應用光纖通信,不僅包括繼電保護信號,也包括語音信號,通過應用光纖通信,可提高信號傳輸質量。(3)由于電力系統的覆蓋范圍廣,在通信這一領域,對傳輸范圍和抗沖擊能力均有較高的要求,為了最大程度上降低通信的損耗,保證傳輸的質量,特別是長距離傳輸的質量,也要求應用光纖通信。
2電力系統中光纖通信的特點
光纖通信的特點,主要是相對于傳統電力通信方式來說的,這些特點同時也可視為光纖通信的優點,主要包括以下幾個方面:(1)電力系統中的光纖通信的通信容量相當大,一般情況下,一對光纖便足以滿足上百路甚至上千路信息路徑通過,同時在一根光纜中,含有幾十根甚至上百根光纖纖芯。(2)眾所周知,光纖的制作材料一般為硅或者玻璃,所以這也就意味著光纖制作的原料來源非常豐富,所以對于節約金屬材料的使用量具有重要的意義。(3)在電力系統通信領域中,光纖通信的保密性良好,外界的電磁干擾不容易對其造成影響,同時光纖通信也不受雷擊、潮濕等因素的影響。(4)電力系統用的光纖,主要是OPGW光纜,其敷設與地線一次性完成,比較簡單。(5)由于光纖通信無感應性能,所以電力系統中的光纖通信不容易受到電位升高的影響,毫無疑問,光纖通信技術是電力通信系統最為理想的通信技術。
3光纖通信在電力系統中的應用領域
光纖通信在電力系統中主要在以下方面有應用:(1)電網監控與調度自動化。電網智能化和自動化程度提高,在電網中應用光纖通信技術成為一種常態,在監控與調度中的應用表現為:把監控傳感器采集到的狀態信息傳輸給上級系統,同時下達有關的指令。(2)在配網自動化中的應用。確保系統運行的安全性與可靠性,要求在電力系統通信領域應用光纖通信,在狀態監測、調度管理與分層控制等方面具有重要的作用。此外,光纖通信在繼電保護器中也有著應用,主要是用于保護電流縱差中的導引線、保護繼電保護裝置、智能變電站或控制室內的信號傳輸線等。
4光纖通信在電力系統中的發展前景
現階段,光纖通信在快速發展的形勢下,已經發展到第五代光纖通信階段,在這一階段的光纖通信技術,具有容量大、信號傳輸速率快等諸多的優點。隨著技術的進度與經貿水平的提高,全球的信息化程度逐步提高,因此對光纖通信的通信距離、容量和速度等提出了更高的要求。電力系統中,光纖通信的發展前景包括下面幾個方面:
4.1光纖傳送網新技術
目前,傳輸40GE/100GE網絡的技術中,主要包括兩種技術:①40Gbit/s技術;②100Gbit/s技術。同時,這兩種技術中又包含有編碼調制技術、色散補償技術與非線性抑制技術,以及OSNR保證對策等幾個方面。在未來電力系統發展過程中,為有效保證長距離光纖通信的要求,應使用光纖傳輸網新技術,主要是FEC技術,也就是多種增強前向糾錯技術,以及動態增益均衡技術、新型編碼調制技術等,通過利用電均衡接收機、功率調整技術等,可實現增加容量的目的。而頻分復用技術、偏振復用技術和波分復用技術等,在未來的電力系統通信中,毫無疑問將會有越來越廣泛的應用。
4.2光纖通信接入網新技術
在現階段,電力系統中光纖通信接入技術主要存在傳輸距離、分光比、業務支持能力等方面的差距。目前光纖接入技術包括EPON技術(即太無源光網絡)、GPON技術(即基于I-TU-TG984標準的新寬帶無源光網絡),以及基于星型結構的以太網接入技術、基于樹形拓撲的APON/BPON技術等。一般情況下,EPON技術的實現,相比于GPON技術來說要簡單不少,但是對于多業務的支持能力不如GPON技術。而基于星型結構的光纖接入技術是在傳統的以太網的基礎上實現的電力系統光纖通信的接入技術,這種技術適宜在單用戶對寬帶的要求大的區域(此種光纖接入情況下只能對單個用戶進行連接)或者具有豐富光纖資源的區域,因此,相對來說基于星型結構的光纖接入技術的范圍比較窄,并不是主流光纖接入技術的發展方向。
4.3光纖通信光交換新技術
對于光網絡來說,典型屬性之一便是光交換。當前,基于實現特征與交換顆粒進行光交換技術的劃分,可以分為OPS即光分組交換、OBS即光突發交換、OCS即光路/波長交換。OCS的交換單位是波長,具有易于實現,交換顆粒大的優勢,然而寬帶的利用率以及復用特性非常差;OPS的交換單位是分組,并且交換的顆粒較小,因此不易于實現,然而其寬帶的利用率以及統計復用特性非常好。基于光路/波長光交換技術與光分組交換技術的OBS,相對來說較為容易實現,同時,寬帶利用率和復用特性能較好,因此,在未來電力系統通信中光纖通信的應用中,OBS會處于主導位置。
5結語
篇4
集成光電子器件近年來隨著光纖通信技術的廣泛利用而得到了極大的發展,由部分走向集成化已經成為其可預期的發展趨勢。32x32、64x64的MEMS光開關現在已經逐步實現了商用化,而兼具組裝光電子器件和直接集成光電子器件的PLC平面光波導線路也正處于投入試用階段。各種家庭,辦公用滿足高清要求的顯示終端也正在大規模推行中。以高清數字電視為例,我國國家廣播電視總局在2000年公布了關于HDTV的行業標準,采用1125/50/2:1格式,通常表達為1920/1080/50i格式。而高清數字電視的水平清晰度可以分為絕對清晰度和相對清晰度兩種。水平方向上實際顯示的線條(黑白線條)數量便是絕對清晰度,通常由于電視畫面寬度與高度尺寸的不同,會導致水平方向能容納相對而言更多的像素數量,而為了兩個方向上可以用相同方法來表示其清晰度,通常會將水平方向的顯示線條數量用以乘上畫面的寬高比,從而得到其“電視線”。等離子顯示器的選擇應該區分專業工程用和民用的產品,用于高清晰多媒體高清電視會議用的專業工程等離子顯示器的優勢在于接口類型非常豐富,插槽式的設計使得其適用的接口類型更加廣泛,此外RGBHV、AVI接口通常只有專業工程等離子顯示器才有,所以高清晰多媒體應用與電視會議辦公通常會采用專業工程用等離子顯示器。
而高清晰多媒體應用之一的電視會議的投影機選擇則需要滿足物理分辨率在1920×1080p,不通過轉換可以實現畫面比例16:9,亮度高于3000ANSI;RGBHV、VGA分量,HDMI、DVI分量,串行控制接口RS232等都應該具備。而工程類投影機長時間使用所顯示出的穩定性極佳,因此一般會選擇工程類投影機。
二、技術需求分析光交換技術
由于光纖通信將光作為載體,要將其用于高清晰多媒體領域,需要解決的首要問題便是傳輸與光交換。其傳輸損耗因為使用的介質的改變而大大降低,使得傳輸問題不再那么棘手。光交換技術主要包括了光分組的產生技術,光分組后再生技術,光分組緩存技術等。而其最主要的目的是為各個端口提供光通道或是無限傳輸方式,以支持各類型數據的傳輸。而如今已經實現的光突發交換技術將DWDM技術所擴展的帶寬進行了充分利用,可以不經由光電相互轉化而直接實現“T比特級別光路由器”,為實現高清晰多媒體數據的傳輸提供了可能性。
光纖接入技術正是由于高清晰多媒體領域對于高質量視頻通信媒體業務和高速數據通信的需求,使得光纖接入技術得以被關注,進而得以實現。光纖接入技術的優勢在于其極大程度地降低了故障發生的頻率,進而降低了維護費用與使用成本,促進了新設備的不斷研發與升級。人民生活水平的日益提高,使其無法再滿足于以往傳統接入方式的傳輸速度,高清晰多媒體成為其競相追逐的對象,而其費用的低廉使其適用度逐步拓展,所以光纖接入技術必將是光纖通信技術在高清晰多媒體領域應用與發展的必然趨勢。
波分復用技術光纖傳輸容量的爆炸式膨脹正是得益于波分復用技術。以光波的不同波長作為低損耗窗口信道劃分的重要依據,在其劃分完畢之后,再用波分復用器將光載波再一次合并,進而在光纖通道中完成傳輸,最后在到達接收端時用復用器再將光波進行分離,這樣便實現了在一個光纖中多路光信號的傳輸過程。這樣的一個過程使得傳輸信息容量得到了極大擴展,大量復雜數據的傳輸在極短的時間內就可以完成,正符合高清晰多媒體的需求。
三、光纖通信技術在高清晰多媒體領域的發展展望
篇5
筆者認為,光纖通信技術尚有很大的發展空間,今后會有很大的需求和市場。主要是:光纖到家庭FTTH、光交換和集成光電子器件方面會有較大的發展。在此主要討論光纖通信的發展趨勢和市場。
光纖通信的發展趨勢
1、光纖到家庭(FTTH)的發展
FTTH可向用戶提供極豐富的帶寬,所以一直被認為是理想的接入方式,對于實現信息社會有重要作用,還需要大規模推廣和建設。FTTH所需要的光纖可能是現有已敷光纖的2~3倍。過去由于FTTH成本高,缺少寬帶視頻業務和寬帶內容等原因,使FTTH還未能提到日程上來,只有少量的試驗。近來,由于光電子器件的進步,光收發模塊和光纖的價格大大降低;加上寬帶內容有所緩解,都加速了FTTH的實用化進程。
發達國家對FTTH的看法不完全相同:美國AT&T認為FTTH市場較小,在0F62003宣稱:FTTH在20-50年后才有市場。美國運行商Verizon和Sprint比較積極,要在10—12年內采用FTTH改造網絡。日本NTT發展FTTH最早,現在已經有近200萬用戶。目前中國FTTH處于試點階段。
FTTH[遇到的挑戰:現在廣泛采用的ADSL技術提供寬帶業務尚有一定優勢。與FTTH相比:①價格便宜②利用原有銅線網使工程建設簡單③對于目前1Mbps—500kbps影視節目的傳輸可滿足需求。FTTH目前大量推廣受制約。
對于不久的將來要發展的寬帶業務,如:網上教育,網上辦公,會議電視,網上游戲,遠程診療等雙向業務和HDTV高清數字電視,上下行傳輸不對稱的業務,AD8L就難以滿足。尤其是HDTV,經過壓縮,目前其傳輸速率尚需19.2Mbps。正在用H.264技術開發,可壓縮到5~6Mbps。通常認為對QOS有所保證的ADSL的最高傳輸速串是2Mbps,仍難以傳輸HDTV。可以認為HDTV是FTTH的主要推動力。即HDTV業務到來時,非FTTH不可。
FTTH的解決方案:通常有P2P點對點和PON無源光網絡兩大類。
F2P方案一一優點:各用戶獨立傳輸,互不影響,體制變動靈活;可以采用廉價的低速光電子模塊;傳輸距離長。缺點:為了減少用戶直接到局的光纖和管道,需要在用戶區安置1個匯總用戶的有源節點。
PON方案——優點:無源網絡維護簡單;原則上可以節省光電子器件和光纖。缺點:需要采用昂貴的高速光電子模塊;需要采用區分用戶距離不同的電子模塊,以避免各用戶上行信號互相沖突;傳輸距離受PON分比而縮短;各用戶的下行帶寬互相占用,如果用戶帶寬得不到保證時,不單是要網絡擴容,還需要更換PON和更換用戶模塊來解決。(按照目前市場價格,PEP比PON經濟)。
PON有多種,一般有如下幾種:(1)APON:即ATM-PON,適合ATM交換網絡。(2)BPON:即寬帶的PON。(3)OPON:采用通用幀處理的OFP-PON。(4)EPON:采用以太網技術的PON,0EPON是千兆畢以太網的PON。(5)WDM-PON:采用波分復用來區分用戶的PON,由于用戶與波長有關,使維護不便,在FTTH中很少采用。
發達國家發展FTTH的計劃和技術方案,根據各國具體情況有所不同。美國主要采用A-PON,因為ATM交換在美國應用廣泛。日本NTT有一個B-FLETts計劃,采用P2P-MC、B-PON、G-EPON、SCM-PON等多種技術。SCM-PON:是采用副載波調制作為多信道復用的PON。
中國ATM使用遠比STM的SDH少,一般不考慮APON。我們可以考慮的是P2P、GPON和EPON。P2P方案的優缺點前面已經說過,目前比較經濟,使用靈活,傳輸距離遠等;宜采用。而比較GPON和EPON,各有利弊。GPON:采用GFP技術網絡效率高;可以有電話,適合SDH網絡,與IP結合沒有EPON好,但目前GPON技術不很成熟。EPON:與IP結合好,可用戶電話,如用電話需要借助lAD技術。目前,中國的FTTH試點采用EPON比較多。FTTH技術方案的采用,還需要根據用戶的具體情況不同而不同。
近來,無線接入技術發展迅速。可用作WLAN的IEEE802.11g協議,傳輸帶寬可達54Mbps,覆蓋范圍達100米以上,目前已可商用。如果采用無線接入WLAN作用戶的數據傳輸,包括:上下行數據和點播電視VOD的上行數據,對于一般用戶其上行不大,IEEES02.11g是可以滿足的。而采用光纖的FTTH主要是解決HDTV寬帶視頻的下行傳輸,當然在需要時也可包含一些下行數據。這就形成“光纖到家庭+無線接入”(FTTH+無線接入)的家庭網絡。這種家庭網絡,如果采用PON,就特別簡單,因為此PON無上行信號,就不需要測距的電子模塊,成本大大降低,維護簡單。如果,所屬PON的用戶群體,被無線城域網WiMAX(1EEE802.16)覆蓋而可利用,那么可不必建設專用的WLAN。接入網采用無線是趨勢,但無線接入網仍需要密布于用戶臨近的光纖網來支撐,與FTTH相差無幾。FTTH+無線接入是未來的發展趨勢。
2、光交換的發展什么是通信?
實際上可表示為:通信輸+交換。
光纖只是解決傳輸問題,還需要解決光的交換問題。過去,通信網都是由金屬線纜構成的,傳輸的是電子信號,交換是采用電子交換機。現在,通信網除了用戶末端一小段外,都是光纖,傳輸的是光信號。合理的方法應該采用光交換。但目前,由于目前光開關器件不成熟,只能采用的是“光-電-光”方式來解決光網的交換,即把光信號變成電信號,用電子交換后,再變還光信號。顯然是不合理的辦法,是效串不高和不經濟的。正在開發大容量的光開關,以實現光交換網絡,特別是所謂ASON-自動交換光網絡。
通常在光網里傳輸的信息,一般速度都是xGbps的,電子開關不能勝任。一般要在低次群中實現電子交換。而光交換可實現高速XGbDs的交換。當然,也不是說,一切都要用光交換,特別是低速,顆粒小的信號的交換,應采用成熟的電子交換,沒有必要采用不成熟的
大容量的光交換。當前,在數據網中,信號以“包”的形式出現,采用所謂“包交換”。包的顆粒比較小,可采用電子交換。然而,在大量同方向的包匯總后,數量很大時,就應該采用容量大的光交換。目前,少通道大容量的光交換已有實用。如用于保護、下路和小量通路調度等。一般采用機械光開關、熱光開關來實現。目前,由于這些光開關的體積、功耗和集成度的限制,通路數一般在8—16個。
電子交換一般有“空分”和“時分”方式。在光交換中有“空分”、“時分”和“波長交換”。光纖通信很少采用光時分交換。
光空分交換:一般采用光開關可以把光信號從某一光纖轉到另一光纖。空分的光開關有機械的、半導體的和熱光開關等。近來,采用集成技術,開發出MEM微電機光開關,其體積小到mm。已開發出1296x1296MEM光交換機(Lucent),屬于試驗性質的。
光波長交換:是對各交換對象賦于1個特定的波長。于是,發送某1特定波長就可對某特定對象通信。實現光波長交換的關鍵是需要開發實用化的可變波長的光源,光濾波器和集成的低功耗的可靠的光開關陣列等。已開發出640x640半導體光開關+AWG的空分與波長的相結合的交叉連接試驗系統(corning)。采用光空分和光波分可構成非常靈活的光交換網。日本NTT在Chitose市進行了采用波長路由交換的現場試驗,半徑5公里,共有43個終端節,(試用5個節點),速率為2.5Gbps。
自動交換的光網,稱為ASON,是進一步發展的方向。
3、集成光電子器件的發展
如同電子器件那樣,光電子器件也要走向集成化。雖然不是所有的光電子器件都要集成,但會有相當的一部分是需要而且是可以集成的。目前正在發展的PLC-平面光波導線路,如同一塊印刷電路板,可以把光電子器件組裝于其上,也可以直接集成為一個光電子器件。要實現FTTH也好,ASON也好,都需要有新的、體積小的和廉價的和集成的光電子器件。
日本NTT采用PLO技術研制出16x16熱光開關;1x128熱光開關陣列;用集成和混合集成工藝把32通路的AWG+可變光衰減器+光功率監測集成在一起;8波長每波速串為80Gbps的WDM的復用和去復用分別集成在1塊芯片上,尺寸僅15x7mm,如圖1。NTT采用以上集成器件構成32通路的OADM。其中有些已經商用。近幾年,集成光電子器件有比較大的改進。
中國的集成光電子器件也有一定進展。集成的小通道光開關和屬于PLO技術的AWG有所突破。但與發達國家尚有較大差距。如果我們不迎頭趕上,就會重復如同微電子落后的被動局面。
光纖通信的市場
眾所周知,2000年IT行業泡沫,使光纖通信產業生產規模爆炸性地發展,產品生產過剩。無論是光傳輸設備,光電子器件和光纖的價格都狂跌。特別是光纖,每公里泡沫時期價格為羊1200,現在價格Y100左右1公里,比銅線還便宜。光纖通信的市場何時能恢復?
根據RHK的對北美通信產業投入的統計和預測,如圖2.在2002年是最低谷,相當于倒退4年。現在有所回升,但還不能恢復。按此推測,在2007-2008年才能復元。光纖通信的市場也隨IT市場好轉。這些好轉,在相當大的程度是由FTTH和寬帶數字電視所帶動的。
篇6
通過這一實驗可以觀察當偏置電流變化從而改變弛豫頻率時,高速光纖傳輸系統的性能變化情況[8],仿真模型如圖3所示。圖3中,Ith=33.45mA,τsp=1ns,τph=3ps,I0=IB=40mA,Sequencelength128bits,Samplesperbit512。仿真結果:在直接光強度調制下弛豫頻率與有源區內的電子壽命和諧振腔內的光子壽命的關系為(3)根據仿真模型設定的參數可以得到弛豫頻率fres≈1.3GHz。圖4給出了系統性能與調制頻率的關系。當調制頻率為1.3GHz時如圖4(a)所示;當調制頻率為5GHz時如圖4(b)所示。由圖4可看出,當調制頻率高于弛豫頻率后,系統性能嚴重變壞。
2摻鉺光纖放大器(EDFA)實驗
本研究用于分析EDFA的頻率特性和噪聲性能[9],仿真模型如圖5所示。在仿真模型中摻鉺光纖參數:Length7m,Corera-dius2.2m,Ermetastablelifetime10ms,Erdopingradius2.2m,Eriondensity1e+025m3,Numericalaperture0.24。仿真結果如圖6所示。圖6中,(a)為CW激光器的頻率與EDFA增益的關系曲線,(b)為信號輸入功率與EDFA增益曲線,(c)為功率噪聲曲線。光接收機實驗光接收機主要的性能指標是靈敏度和動態范圍。本研究的目的是了解光接收機靈敏度與誤碼率的關系及靈敏度與最小輸入功率的關系[10],仿真模型如圖7所示。
3WDM系統實驗
波分復用是光纖通信系統擴大傳輸容量,提高傳輸速率的主要途徑之一,仿真模型如圖9所示。圖9中,利用Mach-Zehnder調制器進行外調制,16路復用,光發射器參數:Bitrate40Gb/s。線路由50km單模光纖與10km色散補償光纖構成循環單元,采用摻餌光纖放大器。解復用器參數:Bandwidth8e+010Hz,Depth100dB,FiltertypeBessel,Filterorder6。圖10為WDM系統實驗仿真結果,圖中給出了解復用器之前光纖線路之后的光譜圖,圖中較低的部分為噪聲部分。
4結束語
篇7
在應用過程中,按照用途將光纖進行分類,可分為傳感光纖和通信用光纖;按照制作工藝分類,可分為材料組成類、制造工藝類和光學特性類;按照傳輸介質分類,可分為專用和通用兩種,并且,功能器件光纖可以應用于放大光波、分頻、整形和光振蕩等方面,從而以不同形態呈現在人們眼前。根據光纖通信的應用情況可知,光纖通信的基本構成結構包括光源、光纖和光檢測器三部分,具有如下幾個特點:
(1)信號干擾小、保密性強。
(2)通信容量超大,可完成遠距離傳輸。一般一根光纖的帶寬在20THz以上,在沒有中繼傳輸的情況下,可傳輸到幾十公里以上。
(3)重量較輕、細徑較細,一般制作材料是石英,大大降低了有色金屬的耗損,使資源得到合理利用。
(4)不受外界因素影響,在任何情況下可使用,具有較長使用壽命。
(5)較強抗電磁干擾能力和絕緣性能,因此,信息傳輸質量非常好。
(6)沒有輻射,不容易被竊聽,提高信息傳輸的安全性。
(7)環繞性好、抗腐蝕能力強,在使用過程中,不會出現火花,減少安全事故。
2光纖通信技術在電力通信中的應用
在電力通信中,電力特種光纖包括OPGW(光纖復合地線)、MASS(金屬自承光纜)、OPPC(光纖復合相線)、ADL(相/地捆綁光纜)、ADSS(全介質自承光纜)和GWWOP(相/地線纏繞光纜)等六種,而我國應用較多的電力特種光纜是ADSS和OPGW兩種,大大提高了電力通信的工作效率,使電能損耗得到大量減少。
2.1ADSS(全介質自承光纜)
根據我國電力通信的發展來看,ADSS(全介質自承光纜)在35KV、110KV、220KV的電壓等級輸電線路上得到了廣泛應用,尤其是目前已建成的線路上使用范圍非常廣,使電力部門利用高壓輸電線桿塔建設通信網絡變得更加方便和快捷,大大減低工作人員的工作量和建設成本。在進行光纜設計時,對溫差、風速和氣候等外界因素進行了充分考慮,因此,ADSS(全介質自承光纜)具有很強的抗震動性、抗沖擊性,可以隨意彎折和抗老化性,并且,成本較低、安裝非常方便、易攜帶,給桿塔帶來的負載非常小。由于ADSS(全介質自承光纜)具有光纖傳輸性能強、環境性能好和光纜機械性能卓越等特點,在實際應用過程中,可以與高雅電力傳輸線架設在同一根電桿上,因此,成為了電力系統中最完美的電網通信傳輸介質,確保了電網通信的信號質量,使光纜傳輸效果得到大大提高。我國現代化建設中,ADSS(全介質自承光纜)在山區、跨度較大區域和雷電集中區等地方的線纜架空敷設中非常適用,在滿足了電力部門自身的通信要求的同時,為通信業務不斷發展和開展新業務提供新的途徑。
2.2OPGW(光纖復合地線)
在電力通信中,OPGW(光纖復合地線)是電路傳輸線路的地形中含有供通信用的光纖單元,由此可見,架空地線中含有光纖,OPGW(光纖復合地線)是架空地線和光纜的復合體。由于OPGW(光纖復合地線)的一次性投入較大,在新建線路或舊線路更換時會選擇使用,具有可靠性高和不需要維護的特點。在實際應用過程中,OPGW(光纖復合地線)擁有兩種功能:一是,與復合在地線中的光纖一起完成信息傳輸,二是作為輸電線路的防雷線,可以對輸電導線起到屏蔽保護的作用。一般情況下,OPGW(光纖復合地線)有鋁管型、鋼管型和鋁骨架型三種,具有光學性能、電氣性能和機械性能,可以應用于具有架空接地線的輸配電線路中,從而使光纖的可靠性和安全性得到大大提高,使我國輸電容量得到機一部提高。在新建線路的應用中,OPGW(光纖復合地線)不需要增加建設成本,在舊線路更換中,只需要將原來的地線更換掉就可以了,并且不需要對桿塔進行加固或重新設計等,從而大大減少工作人員的工作量。另外,OPGW(光纖復合地線)的安裝非常方便,不需要特殊的工具,成為我國電力事業未來發展的重要研究方向。
3結束語
篇8
(1)通過告警接口適配器來對光傳輸設備網管中的故障告警信號進行采集,一旦采集到了相關的故障信心,那么設備就會告警,然后啟動OTDR進行故障的掃描判斷,判斷出故障的大致位置,并進行定位,以便于工作人員比較準備的找到故障位置進行維修,但是,網管告警中經常會有一些非光纜中斷的因素,所以這就對告警接口適配器提出了一些要求,必須能夠支持多種接口和協議,可以比較精確的翻譯出報警信息。
(2)跨段監測和跨段故障掃描。通過對無源光器件或在光纜跨接處跳纖,就能夠實現監測多段連續的光纖線路的遠距離在線或者空閑纖芯的工作,針對不同的監測方式,則必須要根據實際的情況對檢測的方法進行重新的設計,以實現跨段監測,在線監測只能測試一段業務信號,不能實現跨段監測,只能實現跨段故障掃描,當使用在線檢測模式的時候,由于OTDR故障檢測信號和業務信號共用纖芯,跨段設計需要在跨段點上增加兩套無源的波分復用設備(FCM),使測試信號可以旁路。上面介紹的所有的測試方法,空閑芯檢測方法不影響相關光纖的正常工作,也不會對相關的傳輸信號造成干擾,系統的穩定性高,且構造比較簡單,性價比高,且空閑芯檢測支持跨段監測和跨段故障掃描,能夠擴大監測的范圍,因此,當前這種方法應用得最多。
2光纜通信監測系統的硬件平臺
光纜通信檢測系統式整個電力通信網絡中一個非常重要的子系統,為了確保電力通信系統的正常運行,因此應該有一個個系統能夠對大規模的光纖網絡資源進行管理和維護,且應該支持多級管理和維護,以保證系統運行的穩定性。
(1)一級監控中心。一級監控中心主要負責大區域的監測,去監測多級多層的光纜網絡,并且要有一個與檢測規模相對應的監測中心,數據通信網可以將各級的監控中心有效的連接起來,并且將他們各自監測到數據傳送到總的監測中心,然后對故障進行分析判斷,并生成統計報表。
(2)二級監控中心是一級監控中心下面的一個子系統,它主要負責一定區域內的光纖通信監測系統,對這個區域之內的光纜網絡進行自動的監測、進行故障定位、數據管理等,并且接收來自相關監測站點的告警信號和相關的數據,對發生的故障進行有效的統計和處理,并且生成報表。
(3)遠方監測單元。遠方監測單元主要是實現對相關纖芯的監測,并對監測的數據進行采集,然后根據采集的數據繪制出數據曲線,然后進行初級的分析,根據分析的結果對光纜線路進行遠程的控制等工作,通過DCN與上一級別的監控中心數據服務器的通信,支持上級監測中心對本監測站的光纜和RTU設備實施監測和管理功能。主控單元:主控制單元主要指的是遠方監測單元的主控制板,或者是負責遠方監測單元監測控制和數據通信的一個服務中心,它具有網絡接口,以便于更好的進行數據的交換,進行遠程測試等工作;光切換單元:主要有兩種,分別是機械式光路切管開關和電磁式光路切管開關,機械式光路切管開關穩定性好,且抗干擾,但是它的精度比較低,電磁式光路切管開關精度高、體積小、抗震性好,且不耗電不發熱,對于降低整個遠方監測單元的發熱有幫助。
(4)光纜自動監測系統的最大監測距離計算。實際上,光纜自動檢測系統的最大監測距離就是OTRD的極限有效檢測距離,因為在傳輸的過程中可能會有光纜熔接頭損耗、傳輸衰耗等因素,所以它的最大有效傳輸距離應該考慮這些因素。
(5)波分復用模塊。波分復用模塊主要是由光合波器和光濾波器等這些光纖被動元件組成的,針對和纖在線測試方式,FCM可以將OTDR故障掃描信號波與業務信號波耦合在一起注入到受測光纖中。通過在遠端光纜交叉點上設置FCM,可以實現跨段在線故障掃描。
3結語
篇9
論文摘要:城域網光纖通信自動保護系統采用光纖的備份使用機制,用一條主路光纖、一條備路光纖來保證傳輸系統的穩定性、可靠性。是一種在主線路出現故障或阻斷時,用備用線路代替主線路繼續工作、從而保障整個通信正常進行的實時監測系統。因而,該系統所要達到的目的就是運用光纖保護系統的這種機制,來保證通信系統穩定、可靠地運行,從而將由于線路故障所引起的不便和損失減小到最低程度。
一、光纖通信網保護系統概述
實現網絡生存性一般有兩種方法:保護和恢復。
保護是指利用節點間預先分配的容量實施網絡保護,即當一個工作通路失效時,利用備用設備的倒換,使工作信號通過保護通路維持正常傳輸。保護往往處于本地網元或遠端網元的控制下,無需外部網管系統的介入,保護倒換時間很短,但備用資源無法在網絡范圍內共享,資源利用率低。
恢復則通常利用節點間可用的任何容量,包括預留的專用空閑備用容量、網絡專用的容量乃至低優先級業務可釋放的容量,還需要準確地知道故障點的位置,其實質是在網絡中尋找失效路由的替代路由,因而恢復算法與網絡選用算法相同。使用網絡恢復可大大節省網絡資源,但恢復倒換由外部網絡操作系統控制,具有相對較長的計算時間。
通常認為保護是一種能夠提供快速恢復、適用特定拓撲的技術(例如線形和環形);而恢復通常主要適用網狀拓撲,能最佳的利用網絡資源。
二、光纖通信網自動保護系統方案選擇
隨著WDM系統的廣泛使用,在光層上實現對點到點系統的保護倒換就成為一個非常重要的課題。許多光網絡的保護結構與SDH是極其相似的。對于點對點的線路系統,經常考慮1+1和1:1的線路(光復用段OMS)保護倒換方案。
線路保護倒換的工作原理是當工作鏈路傳輸中斷或性能劣化到一定程度后,系統倒換設備將主信號自動轉至備用光纖系統來傳輸,從而使接收端仍能接收到正常的信號而感覺不到網絡已出現故障。該保護方法只能保護傳輸鏈路,無法提供網絡節點的失效保護,因此主要適用于點到點應用的保護。
(一)1+1光保護層
對于1+1光鏈路保護,只能對鏈路故障中的業務進行保護。這種方法是利用光濾波器來橋接光信號,并把同樣的兩路信號分別送入工作光纖和保護光纖的通道中。保護倒換完全是在廣域網內實現。當遇到單一的鏈路故障時,在接收端的光開關便把線路切換到保護光纖。由于在這里電層的復制和操作,所以除了當發射機和接收機發生故障時會丟失業務外,一切故障都可以恢復。
(二)1:1光保護層
(1:1)的光層保護方案與(1+1)的光層保護方案很類似,都是利用備用的路由鏈路來避免鏈路故障對業務的影響。業務流量并不是被永久地橋接到工作和保護光纖上,相反,只有出現故障時,才在工作光纖和保護光纖之間進行一次切換。
在雙向通道中,當有故障事件出現時,使用APS信令信道來協調交換機的保護倒換動作。在(1+1)的SONET網絡中的保護恢復結構中,在頭和尾之間有一個APS信道,保護倒換的實現既使用了保護光纖又使用了一條APS信令信道。而在(1:1)的光層保護結構中,在保護光纖中不必存在相互通信的通道,因為這種結構沒有在電層上被復制信號。只有當發射端和接收端都切換到保護光纖中,這個通信通道才建立起來。當出現故障時,如果接收端不知道發射端是否切換到保護光纖上時,接收機端就經由保護光纖給發射端發出一個消息。因此,當接收機最初倒換到保護光纖上時它并不能接收到任何信號。而如果發射端已切換到保護光纖上了,那么利用上述過程就可完成對業務的保護和恢復。否則,業務流量就會丟失。如果再由一個獨立的“帶外”光業務通道來支持保護倒換的信令,那么這種發射機與接收機在協調工作方面的困難就可以避免掉。
(三)1:N光保護層
(1:N)的光層保護結構與(1:1)的保護結構類似。然而在這里,N個工作實體共享同一個保護光纖。如果有多條工作光纖出現故障,那么只有其中的一條所承載的流量可以恢復。最先恢復的使具有最高優先級的故障。
通過以上幾種點到點的光層保護倒換方案的比較可以看出:1:1光層保護技術有更高的恢復率和可靠性。
三、城域網光纖通信自動保護系統的組成結構
城域網光纖通信自動保護系統采用三級分層控制結構,第一級為遠層監控中心,負責各監控站的監測、通信和控制的授權,通常由網絡通信設備和計算機組成;第二級為監測站,向上一級的遠程監控中心反映系統工作狀態,往下一級實現對各條線路進行整體地集中監測和管理,通常由主控盤和顯示器組成;第三級為多個光保護盤,實現對各條通信線路的監控和管理,并和上一級進行通信,反映系統工作狀態光保護盤是線路監測和切換的直接執行者,同時又完成向監測站的數據傳輸和狀態顯示,它主要由光信號發送部分和接收兩部分組成。Sin為發送端光端機發出信號的輸入端,光端機輸入的信號從該接口進入光保護盤,當系統工作在主路時,通過光開關從Sout1主發端送到主路通信光纖中;在系統工作在備路時,則從Sout2備發端送入通信線路的備路光纖中。Rin1為主路光信號的輸入端,系統工作在主路狀態時光纖線路輸入的信號從該接口進入光保護盤,經過分光器分出3%的光信號用于檢測,另外的97%的光信號從Rout發端送到接收光端機中;在系統工作于備路時,光纖線路輸入的信號則從Rin2備送入光保護盤,從Rout發送到接收光端機。另外光保護盤還備有主/備線路工作狀態指示燈、本盤復位按鈕、RS-485計算機接口和電源接口。
在本系統的結構設計中,采取模塊化的方式進行設計,容易的實現功能擴展。系統設計時充分體現構件化的思想,小到功能點,大到子系統,甚至整個系統貫穿“構件”的概念。
四、城域網光纖通信自動保護系統的工作原理
城域網光纖通信自動保護系統采用光纖的備份使用機制,用一條主路光纖,一條備路光纖來保證傳輸系統的穩定性、可靠性。在主線路出現故障或阻斷時,用備用線路代替主線路繼續工作、從而保障整個通信正常進行的實時監測系統。它對通信線路的監控功能主要體現在如下三個方面:
(一)主路在用光纖正常運行時
自動保護系統的各光保護盤對主路在用光纖實時地進行收光功率監測,自動建立參考,自動分析,時刻與監測站和遠程監測中心保持通信,響應各種指令。
(二)主路光纖發生故障時
當系統收到的光功率值小于絕對告警門限(認為系統無光時的光功率值),或者收到的光功率值與系統參考光功率值(正常通信時的光功率值)之差大于相對告警門限(和正常通信時的收光功率相比較,光功率衰減到致使通信不穩定或不能正常進行的光功率變化值)時,系統控制模塊就判定通信光纖處于阻斷狀態,自動將通信從主路光纖切換到備路光纖。
(三)主路光纖修復后
對主路光纜進行測試,確認線路沒有問題后,在遠程控制中心受權下,通過對光纖自動保護系統的復位操作使通信系統從備路光纖切換到主路光纖。
參考文獻:
[1]原榮.光纖通信網絡.北京:電子工業出版社,1998
篇10
1.1網絡通信形式單工通信、半雙工通信、全雙工通信是網絡通信的主要形式。其中,遙控器是單工通信的代表,發送者和接受者是固定的,數據只能由發送者向接受者傳輸;對講機是半雙工通信的代表,盡管能相互傳輸,但不能同時相互傳輸;移動電話是全雙工通信的代表,數據既能雙向傳輸,又能同時傳輸,是網絡通信發展的產物。
1.2網絡通信內容
1)數據通信利用數據通信能有效地實現信號的傳輸。數據通信大量應用在社會的各個領域,包括自動化技術、遙感技術、航空技術、軍事技術、資源探測開發等方面,并且隨著社會的發展,數據通信已逐步開始在人們的日常生活中普及開來,對人們的工作、學習、生活帶來了翻天覆地的變化。數據通信功能的實現離不開軟件和硬件的相互配合,主要內容有傳輸媒體、接口、數據鏈路復用、信號傳輸、數據鏈路控制和信號編碼等。
2)網絡連接通過連接介質,以某種方式把各種通信設備連接在一起形成一個龐大的結構體系是為網絡連接。在網絡連接這個體系中,連接介質、通信設備、通信技術、連接方法等各種要素相互影響、相互關聯,具有分類多功能性和協調統一性。不同的連接介質其功能不同,不過都要具有可靠性,連接介質包括雙絞線、微波、通信衛星、電纜、載波和光纖。就當前來看,連接介質受到材質、技術的影響,具有一定的局限性,不過隨著社會的發展,我們可以找到更加可靠高效的介質。
3)協議網絡協議并不同于我們日常生活中的口頭協議、書面協議,它專指在通信過程中采用某種形式或方法。通過網絡協議,可以對不同體系總體結構以及各不同層次分體結構繼進行具體的分析和解析,已達到各體系相互連接的目的,保證結構的開放性和融合性。作為一個分散集合體,計算機網絡就是通過網絡協議形成的,在計算機網絡各個末端連接著不同個體、不同位置的計算機。
4)安全防護計算機網絡是由兩個部分組成,即計算機網絡和通信網絡。通信網絡的終端或信源就是計算機,能夠進行有效地信息傳輸和交換。計算機通信網絡安全是在了解計算機性質的基礎上采取相應的防護措施進行計算機系統的全面保護,具體包括硬件、應用軟件等,有效地防止非本用戶使用服務,從而更好地維護系統的正常運行。在國外計算機通信網絡安全的發展現狀。較早的計算機通信網絡安全研究是起于國外,并且具有很廣泛的應用,在上個世紀的70年代,美國就研究出了“計算機保密模型”,并且在此理論的基礎上又制定出了“可信計算機系統安全評估準則”,通過不斷地完善,終于形成了安全信息系統結構的準則。后來又發現了狀態機、模態邏輯以及代數工具等三種不同的分析方法,但是還存在著很多的問題。通過密碼體制終于克服了網絡信息系統密鑰管理中的一大難題,為電子商務的安全性提供了有效地保障,隨著計算機運算速度的不斷提升,各種新的密碼技術正不斷地涌現出來,為建設完善的計算機通信網絡安全系統做出了很大的貢獻。在國內計算機通信網絡安全的發展現狀。我國的信息網絡安全研究主要包括兩種,即通信保密、數據保護。在計算機通信網絡安全研究的過程中經歷了很多的變革,先后出現了防火墻、安全網關、系統脆弱性掃描軟件等,隨著社會的不斷發展,信息技術水平不斷地提升,安全隱患越來越多,因此要不斷地研究新的防護技術,確保信息網絡技術的安全運行。目前我國的計算機通信網絡安全研究正向完善安全體系結構、現代密碼理論、信息分析及監控體系等方向發展,制作出具有系統性、完整性以及協同性的信息網絡安全方案。不僅僅要滿足對數據進行有效地處理和分析,而且還要加強保密體系的建設,不斷地完善通信協議和通信軟件系統,提升計算機內部管理人員的專業素質和技術水平,制定出完善的安全防護和等級鑒別方案,防止不法分子利用軟件漏洞進行犯罪活動,影響到計算機通信網絡技術的發展。
2光纖通信技術及通信信號
2.1光纖通信技術介紹隨著科學技術的發展,光纖通信技術正逐步應用在通信領域中。相對于金屬或其他電纜,光纖傳輸能力更強,數據傳輸能力不可同日而語,比如單模光纖已具有幾十GHZkm的寬帶。光纖產生數據具有較大的傳輸寬帶,比如散波長窗口。光纖的通信功能是通過光纖的色散特性和光源的調制特性、調制方式實現的,不過由于終端設備的限制,光纖的優勢并不能得到有效的發揮,在單波長光纖通信系統這種情況表現的更加明顯。而大量的實驗表明,密集波分復用技術能有效地利用光纖的寬帶優勢,可使得2.5Gbps~10Gbps單波長光纖通信增加至100Gbps,也就是說其傳輸容量可達單波長光纖通信的數十倍。
2.2光纖材料光導纖維即是我們常說的光纖,主要是由玻璃或塑料制成的,光在其中通過全反射能實現傳導。生活中,我們常見的是玻璃制成的普通階躍型光纖。而光子晶體光纖大多是由硅的合成物摻雜一些硅晶體做成的,在晶體內部有空氣空洞。由于石英材質制成的光纖損耗很低,沒千米不超過0.21dB,相對于其它介質結構,其產生的中繼距離更遠,是目前最實用的光纖。
2.3通信信號的衰弱和再生
1)通訊信號的衰弱造成通訊信號的衰弱的原因是多方面的,在通訊信號長距離傳輸的過程中,可以采用信號放大器來降低光波能耗損失的影響,但通訊信號的衰弱是不可避免的,造成通訊信號的衰弱的原因有:瑞立散射、物質吸收、米氏散射、連接器造成的損失,就算是性能的優越的石英光纖,其內部的雜質同樣會增大可比系數,造成光波能耗損失。并且,光纖密度不均衡、接合技術不達標、光纖變形同樣會引起通訊信號的衰弱。
2)通訊信號的再生技術由于通訊信號的衰弱,通訊信號的再生技術應運而生,能有效地避免由于通訊信號的衰弱所產矛盾的進一步醞釀和發展,保證通訊傳輸暢通無阻,避免嚴重事故的發生。通訊信號的再生技術泛指所有能彌補通訊信號的衰退的技術,再生技術的發展和應用降低通訊系統的運行成本。比如海底光纖,在應用在再生技術之前,主要是借助中繼器來實現光纖傳輸,而中繼器維護成本高昂,阻礙著海底光纖的普及,而再生技術的發展很好滴解決了這個問題。
3結束語