計量消費論文:高校生消費的計量及提議

時間:2022-02-20 03:32:20

導語:計量消費論文:高校生消費的計量及提議一文來源于網友上傳,不代表本站觀點,若需要原創文章可咨詢客服老師,歡迎參考。

計量消費論文:高校生消費的計量及提議

本文作者:張孜博工作單位:南京工業大學經濟與管理學院

消費函數的計量模型設定由于大學生消費水平受多種收入因素的影響,借用消費理論的消費函數,以此建立多元回歸模型如下:y=βo+β1X1+β2X2+β3X3+εiE(y)=βo+β1X1+β2X2+β3X3其中,y為學生的平均月消費(元);X1為學生平均每月由家庭提供的收入(元);X2為學生平均每月做兼職所獲取的收入(元);X3為學生平均每月的特困補助的收入(元);βo為自發性消費;β1、β2、β3為邊際消費傾向;ε表示其它隨機因素的影響。數據的搜集情況收集2010年南京工業大學經管、外語、中文院50名在校生每月消費支出的數據。分析結果顯示:60%的同學做課外兼職,15%的同學享受國家特困補助。比例較有代表性,基本符合高校學生特點。為方便分析大學生消費狀況,在調查中,除去了大學生向學校所繳納的培養費、學雜費、住宿費和寒假往返費。結果見表1。表1南京工業大學學生生活費用來源于消費情況(元/月)上表設總體回歸模型為:Yi=β0+β1X1i+β2X2i+β3X3+μi(i=1,2,3,…,50)——(1)該式是樣本數據結構形式的多元總體線性回歸模型,它由50個方程,4個未知參數組成。模型矩陣為Y=Xβ+U。參數β0,β1,β2,β3都是未知數,利用樣本觀測值估計。設計算得到的樣本估計量為β0,β1,β2,β3是相應的未知數β0,β1,β2,β3的估計值。用stata得回歸方程為Y=98.757+0.778X1+0.40X2-1.2787X3,所以:擬合優度R2=RSS/TSS=0.9951。

模型分析與檢驗1、模型分析復相關系數R=0.9975擬合優度R2=0.9951,因此,大學生消費函數的回歸方程擬合優度高。2、F檢驗從總體上對模型中被解釋變量與解釋變量間的線性關系是否顯著,對一定顯著性水平下回歸方程的顯著性檢驗(α=0.05);具體是:(i)提出原假設Ho:β1=β2=0;備擇假設H1:β1,β2至少有一個不為0;(ii)RSS=147524.595,ESS=727.905,n=10,k=3計算得:F=RSS/k/ESS/(n-k-1)=405.3;(iii)查F分布表,得F=F(3,6)=4.76(α=0.05,自由度n-k-1=6)做判斷由于F=405.3>F(3,6)=4.76,說明Xi對因變量y有顯著影響。拒絕原假設,接受備擇假設,總體回歸方程是顯著的。即:大學生消費支出與各類所得收入間的線性關系顯著。結果分析假設X2、X3保持不變,E(y)對X1求偏導,得β1,β1為邊際消費傾向,可理解為家庭給予的費用每增加一個單位,學生消費y的值就平均增加0.778個單位。由于β1是正值,表明隨家庭給予費用增加,學生消費值相應增加,且學生們在此項收入來源上消費傾向很高,與事實較符。假設X1、X3保持不變,E(y)對X2求偏導,得β2為邊際消費傾向,可解釋為學生勤工儉學的收入每增加一個單位,學生消費y的值就增加0.40個單位.由于β2是正的,表明y與β2的變化規律是學生勤工儉學費用增加,學生消費也提高,說明學生對自己勞動所得貨幣的支配消費欲望相對低。假設X1,X2保持不變,E(y)對X3求偏導,得β3為邊際消費傾向,可以解釋為學生享有的特困補助每增加一個單位,特困學生消費相對平均量E(y)的值減少1.2787單位。β3符號為負,表明y與β3的變化規律是特困補助金額越高,消費平均值越低。

大學生月消費集中在800元~1500元。樹立正確的消費觀、規范自己的消費行為,是大學生直面的人生課題。完全依靠家庭供給學生的消費支出中,娛樂、旅游等精神享用品,通訊費等灰色消費支出占一定比例。模型的反饋反映大學生消費水平與其生活費用不同來源有正、反兩方面的變化趨勢。因此,希望社會、家庭和高校教師能以此變化規律,引導富裕家庭學生的消費行為;不要鋪張浪費。學校應增加特困生津貼,為特困學生創造更多的勤工儉學機會,使其能夠順利地完成學業。