高頻開關(guān)電源范文
時間:2023-04-05 00:09:13
導(dǎo)語:如何才能寫好一篇高頻開關(guān)電源,這就需要搜集整理更多的資料和文獻(xiàn),歡迎閱讀由公務(wù)員之家整理的十篇范文,供你借鑒。
篇1
摘要:介紹了高頻開關(guān)電源的控制電路和并聯(lián)均流系統(tǒng)。控制電路采用TL494脈寬調(diào)制控制器來產(chǎn)生PWM脈沖,用軟件的方式實現(xiàn)多電源并聯(lián)運行時達(dá)到均流的方法。
關(guān)鍵詞:開關(guān)電源;脈寬調(diào)制;均流
引言
模塊化是開關(guān)電源的發(fā)展趨勢,并聯(lián)運行是電源產(chǎn)品大容量化的一個有效方案,可以通過設(shè)計N+l冗余電源系統(tǒng),實現(xiàn)容量擴(kuò)展。本系統(tǒng)是多臺高頻開關(guān)電源(1000A/15V)智能模塊并聯(lián),電源單元和監(jiān)控單元均以AT89C51單片機(jī)為核心,電源單元的均流由監(jiān)控單元來協(xié)調(diào),監(jiān)控單元既可以與各電源單元通信,也可以與PC通信,實現(xiàn)遠(yuǎn)程監(jiān)控。
1PWM控制電路
TL494是一種性能優(yōu)良的脈寬調(diào)制控制器,TL494由5V基準(zhǔn)電壓、振蕩器、誤差放大器、比較器、觸發(fā)器、輸出控制電路、輸出晶體管、空載時間電路構(gòu)成。其主要引腳的功能為:
腳1和腳2分別為誤差比較放大器的同相輸入端和反相輸入端;
腳15和腳16分別為控制比較放大器的反相輸入端和同相輸入端;
腳3為控制比較放大器和誤差比較放大器的公共輸出端,輸出時表現(xiàn)為或輸出控制特性,也就是說在兩個放大器中,輸出幅度大者起作用;當(dāng)腳3的電平變高時,TL494送出的驅(qū)動脈沖寬度變窄,當(dāng)腳3電平變低時,驅(qū)動脈沖寬度變寬;
腳4為死區(qū)電平控制端,從腳4加入死區(qū)控制電壓可對驅(qū)動脈沖的最大寬度進(jìn)行控制,使其不超過180°,這樣可以保護(hù)開關(guān)電源電路中的三極管。
振蕩器產(chǎn)生的鋸齒波送到PWM比較器的反相輸入端,脈沖調(diào)寬電壓送到PWM比較器的同相輸入端,通過PWM比較器進(jìn)行比較,輸出一定寬度的脈沖波。當(dāng)調(diào)寬電壓變化時,TL494輸出的脈沖寬度也隨之改變,從而改變開關(guān)管的導(dǎo)通時間ton,達(dá)到調(diào)節(jié)、穩(wěn)定輸出電壓的目的。脈沖調(diào)寬電壓可由腳3直接送入的電壓來控制,也可分別從兩個誤差放大器的輸入端送入,通過比較、放大,經(jīng)隔離二極管輸出到PWM比較器的正相輸入端。兩個放大器可獨立使用,如分別用于反饋穩(wěn)壓和過流保護(hù)等,此時腳3應(yīng)接RC網(wǎng)絡(luò),提高整個電路的穩(wěn)定性。
如圖1所示,PWM脈沖的占空比有內(nèi)部誤差放大器EA1來調(diào)制,而內(nèi)部誤差?大器EA2則用來打開和關(guān)斷TL494,用于保護(hù)控制。腳2和腳15相連,并與公共輸出端腳3相連通,因腳3電位固定,所以,TL494驅(qū)動脈沖寬度主要由腳1(PWM調(diào)整控制端)來控制;腳16是系統(tǒng)保護(hù)輸入端,系統(tǒng)的過流、過壓、欠壓、過溫等故障以及穩(wěn)壓或穩(wěn)流切換時關(guān)斷信號都是通過腳16來控制。鋸齒波發(fā)生器定時電容CT=0.01μF,定時電阻RT=3kΩ,其晶振頻率fosc==36.6kHz。內(nèi)部兩個輸出晶體管集電極(腳8和腳11)接+12V高電平,其發(fā)射極(腳9和腳10)分別驅(qū)動V1和V2,從而控制S1和S2,S3和S4管輪流導(dǎo)通和關(guān)閉。
2軟件介紹
2.1電源單元和監(jiān)控單元的軟件
高頻開關(guān)電源單元主要有數(shù)據(jù)采集,電壓電流輸出給定,鍵盤和LED顯示,故障處理以及與監(jiān)控單元RS485通信等子程序組成。監(jiān)控單元主要有鍵盤和液晶顯示,EEPROM以及與電源單元和PC機(jī)RS485通信等子程序組成。EEPROM用于存放工作參數(shù)和其他不能丟失的信息,它采用X5045芯片,X5045有512字節(jié),內(nèi)涵看門狗電路,電源VCC檢測和復(fù)位電路。
如果出現(xiàn)故障,電源單元立即做出相應(yīng)處理,并主動向監(jiān)控單元申請中斷,將故障數(shù)據(jù)傳送給監(jiān)控單元,監(jiān)控單元立即調(diào)用故障處理程序,如果故障嚴(yán)重將切除故障電源,并啟動備份電源,而且將故障情況傳送給PC機(jī)。
2.2均流處理程序
高頻開關(guān)電源單元將各自的電壓和電流發(fā)送給監(jiān)控單元,監(jiān)控單元接收到各電源單元的電壓和電流信息后,馬上進(jìn)入均流判定處理程序。本程序?qū)⒏鶕?jù)均流精度的要求,計算出該由哪個電源單元進(jìn)行怎樣的調(diào)節(jié)以達(dá)到均流要求。該程序主要包括下面兩個模塊:第一個模塊主要完成電壓的檢查工作,發(fā)現(xiàn)電源單元電壓偏移超過要求,馬上進(jìn)行相應(yīng)調(diào)節(jié),保證其電壓為要求值;第二個模塊用于進(jìn)行均流計算,該模塊將找出電流偏移平均值超過規(guī)定要求的電源單元,并進(jìn)行相應(yīng)的調(diào)節(jié)。均流流程圖如圖2所示。
由于在實際運用中,各電源單元的電壓值并非完全一致,所以本系統(tǒng)對多電源單元并聯(lián)后的電壓有兩條要求。
1)多電源單元并聯(lián)時,若各電源單元之間的最大電壓偏差>0.5%,那么并聯(lián)后的輸出電壓要求在各電源單元的電壓之間;若各電源單元之間的電壓偏差均<0.5%,那么并聯(lián)后的輸出電壓應(yīng)為各電源單元電壓的中間值加0.25%誤差。本要求同時兼顧了盡量提高穩(wěn)壓精度和防止電壓調(diào)節(jié)過于頻繁的要求。
2)并聯(lián)后的輸出電壓與任一電源單元工作時的電壓之差≤1%(本電源要求穩(wěn)壓精度<1%)。
若找不到符合要求的電壓點,則程序認(rèn)為相互并聯(lián)的電源的電壓偏差過大,將停止均流調(diào)節(jié),并按要求提出警告。
第二個模塊用于對各模塊的電流進(jìn)行均流計算,在本系統(tǒng)中,軟件的均流精度定在5%。程序找出大于或小于平均電流的模塊,如果超過了精度范圍,程序?qū)⒃O(shè)置相應(yīng)標(biāo)志位,然后啟動通信程序,通知相應(yīng)電源模塊啟動調(diào)節(jié)程序。
篇2
關(guān)鍵詞:硬開關(guān); 軟開關(guān); 零電流; 零電壓; 準(zhǔn)諧振
中圖分類號:TN710-34 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2011)24-0006-02
High-frquency Switching Power Supply Converter Based on Quasi-resonance Soft-switch
LIANG Tao
(Department of Electrical Engineering, Guangxi Mechanical and Electrical College, Nanning 530007, China)
Abstract: The tradition high-frequency switching power supply transfer circuit uses the hard-switch technology, whose the circuit power consumption is great, the withstanding voltage and the current stress are high. In order to overcome the hard switch technology negative factors caused by the forced shutoff when electric current goes through the switching valve and the forced breakover when the switching valve has voltage, the quasi-resonance soft switch technology is adopted, namely zero current switch (ZCS) quasi-resonant converter and zero voltage switch (ZVS) quasi-resonance converter. The resonant loop is composed of the inductance and electric capacity. It allows the breakover when the switching valve is at zero voltage or the shutoff when the the switching valve is at zero current by the aid of the energy exchange between the inductance, electric capacity to achieve the reduction of switching power consumption and the electromagnetic interference. The soft switch technology is widely used in new switching power supply.
Keywords: hard-switch; soft-switch; zero current; zero voltage; quasi-resonance
在高頻開關(guān)電源的DC-DC變換電路中,功率開關(guān)管在控制信號強(qiáng)制控制下,有電壓時被開通,有電流時被關(guān)斷,這種工作方式稱為硬開關(guān)。傳統(tǒng)的PWM開關(guān)方式屬于硬開關(guān)技術(shù),它的缺點顯而易見。
(1) 開關(guān)管無論在導(dǎo)通或截止時,電壓和電流均不為零,功率器件承受的電壓、電流應(yīng)力大,開關(guān)管存在功耗,且開關(guān)頻率越高,功耗愈大。
(2) 開關(guān)管關(guān)斷時,電路中的感性元件和容性元件會產(chǎn)生幅值很高的尖峰電壓和尖峰電流,對開關(guān)器件造成危害,且開關(guān)頻率越高,損害越大。
(3) 隨著工作頻率的增高,會產(chǎn)生嚴(yán)重的電磁干擾,對自身電路及電網(wǎng)和周邊電子設(shè)備造成影響。
理想的關(guān)斷過程是電流先降到零,電壓再緩慢上升到斷態(tài)值,關(guān)斷損耗近似為零。因為功率開關(guān)管關(guān)斷之前,電流已下降到零,這就解決了感性關(guān)斷尖峰電壓問題,而理想的導(dǎo)通過程是電壓已先降到零,電流再緩慢升到斷態(tài)值,導(dǎo)通損耗近似為零。功率開關(guān)管結(jié)電容上的電壓也為零,解決了容性導(dǎo)通尖峰電流問題。為了解決硬開關(guān)方式帶來的各種不利因素,采用了多種措施。其中,準(zhǔn)諧振型開關(guān)方式屬于軟開關(guān)方式,利用諧振技術(shù),使功率開關(guān)管實現(xiàn)了零電壓或零電流的導(dǎo)通和截止,基本消除開關(guān)損耗。諧振型開關(guān)方式可分為零電流開關(guān)型(ZCS)和零電壓開關(guān)型(ZVS);按控制方式分為脈沖寬度調(diào)制(PWM)和脈沖相移控制(PS)。實際應(yīng)用中,PWM軟開關(guān)變換器多用于小功率DC-DC開關(guān)穩(wěn)壓電源,PS軟開關(guān)變換器則用于中大功率DC-DC開關(guān)穩(wěn)壓電源中。
下面介紹幾種常見的軟開關(guān)變換器。
1 零電流開關(guān)準(zhǔn)諧振變換器
圖1是零電流開關(guān)準(zhǔn)諧振變換器(ZCS-QRC)基本電路。諧振電容C與整流二極管D并聯(lián),諧振電感與有源開關(guān)(晶體管或MOS管)S串聯(lián)。S在零電流時接通和關(guān)斷,而D在零電壓時接通和關(guān)斷。由于L和C諧振,通過S的電流發(fā)生振蕩并歸零,這就導(dǎo)致了自然換向。該電路特點是減少了關(guān)斷時的損耗,但存在電容在接通時的損耗,電容儲存的能量在S管導(dǎo)通時消耗在S管內(nèi),且與S管開關(guān)頻率成正比。
2 零電壓開關(guān)準(zhǔn)諧振變換器
圖2是零電壓開關(guān)準(zhǔn)諧振變換器(ZVS-QRC)基本電路。諧振電容C與有源開關(guān)器件S并聯(lián),諧振電感L與D串聯(lián),S剛關(guān)斷時,電容C上的電壓逐漸上升,并與電感L產(chǎn)生諧振,因此S是在零電壓時接通和關(guān)斷,而整流二極管D是在零電流時接通和關(guān)斷。該電路特點是開關(guān)器件的電壓被整形成準(zhǔn)正弦波,為開關(guān)接通創(chuàng)造零電壓條件,減少了接通時的損耗。存在的問題是開關(guān)管還存在過剩的電壓應(yīng)力,這種應(yīng)力與負(fù)載大小成正比,此外整流二極管結(jié)電容與諧振電感引起的諧振會產(chǎn)生電磁干擾。
3 零電壓開關(guān)多諧振變換器
圖3是零電壓開關(guān)多諧振變換器基本電路。諧振電容C同時與開關(guān)管和二極管并聯(lián),這樣S和D都可以在零電壓進(jìn)行轉(zhuǎn)換,這個電路的好處是多諧振電路把開關(guān)管輸出電容、二極管結(jié)電容、變壓器漏感等寄生參量吸收到諧振電路中,極大降低了開關(guān)損耗和噪聲。該電路的缺點是開關(guān)管、整流二極管承受較大的電壓和電流。
4 軟開關(guān)脈沖寬度調(diào)制器
軟開關(guān)脈沖寬度調(diào)制器是由軟開關(guān)脈沖寬度調(diào)制器ZVS(或ZCS)-QRC與PWM控制的無隔離變壓器式功率變換器組合而成的。圖4中,當(dāng)有源開關(guān)器件S與有源輔助開關(guān)器件S1同時接通時,C和L構(gòu)成準(zhǔn)諧振,當(dāng)S接通,S1關(guān)斷時,電感L續(xù)流。這樣,在一個周期內(nèi),一段時間工作在準(zhǔn)諧振狀態(tài),另一段時間工作在PWM狀態(tài)。該電路特點是主開關(guān)S承受電流(或電壓)應(yīng)力小,所以使用性能較上述電路好。
5 PS軟開關(guān)變換器
PS軟開關(guān)變換器也稱脈沖移相控制變換器,常用在大、中功率開關(guān)電源中,是實現(xiàn)高頻化的理想拓?fù)渲弧4蠊β室葡嗫刂茦蚴阶儞Q器由4個功率開關(guān)器件組成全橋電路的橋臂,每個開關(guān)管導(dǎo)通時間固定不變,同一橋臂的兩只開關(guān)管相位相差180°,這樣只有相對的2只開關(guān)管都導(dǎo)通,變換器才有功率輸出。該電路利用功率開關(guān)管輸出電容(C1~C4)和輸出變壓器的漏電感(L)作為諧振元件,使變換器的4個開關(guān)管依次在零電壓下導(dǎo)通,實現(xiàn)軟開關(guān)控制。
6 結(jié) 語
高頻開關(guān)電源大量應(yīng)用于各種用電設(shè)備,傳統(tǒng)的功率變換器采用硬開關(guān)技術(shù),其缺點顯而易見。軟開關(guān)變換器技術(shù)有多種設(shè)計方式,目的是最大程度地解決硬開關(guān)技術(shù)缺陷,它是一種行之有效的電路。
參 考 文 獻(xiàn)
[1] 曲學(xué)基,王增福,曲敬鎧.新編高頻開關(guān)穩(wěn)壓電源[M].北京:電子工業(yè)出版社,2005.
[2] 沙占友.開關(guān)電源優(yōu)化設(shè)計[M].北京:中國電力出版社,2009.
[3] 張興柱.開關(guān)電源功率變換器拓?fù)渑c設(shè)計[M].北京:中國電力出版社,2010.
[4] 劉鳳君.現(xiàn)代高頻開關(guān)電影技術(shù)及應(yīng)用[M].北京:電子工業(yè)出版社,2008.
[5] 劉勝利.高頻開關(guān)電源新技術(shù)應(yīng)用[M].北京:電力電子出版社,2008.
[6] 陳庭勛.非線性濾波電感在開關(guān)電源中的作用[J].電源技術(shù)應(yīng)用,2006(6):6-10.
[7] 李定宣.開關(guān)穩(wěn)壓電源設(shè)計與應(yīng)用[M].北京:中國電力出版社,2006.
[8] PRESSMAN A I, BILINGS K, MOREY T.開關(guān)電源設(shè)計[M].北京:電子工業(yè)出版社,2010.
[9] 錢振宇.開關(guān)電源的電磁兼容性設(shè)計與測試[M].北京:電子工業(yè)出版社,2006.
篇3
關(guān)鍵詞:高頻開關(guān)電源監(jiān)控系統(tǒng) 高頻開關(guān)控制器 傳輸方式
1 高頻開關(guān)電源監(jiān)控系統(tǒng)的組成
高頻開關(guān)電源監(jiān)控系統(tǒng)由交流配電部分、整流器、直流配電部分和控制器(又稱監(jiān)控模塊)組成,如圖1所示:
2 控制器
2.1 高頻開關(guān)電源系統(tǒng)中的控制又稱監(jiān)控模塊或監(jiān)控單元,它與高頻開關(guān)電源系統(tǒng)中的交流檢測單元、直流檢測單元和轉(zhuǎn)接單元等組成本機(jī)監(jiān)控系統(tǒng),對開關(guān)電源系統(tǒng)及蓄電池組進(jìn)行實時檢測、控制和故障告警,并使開端電源能夠遠(yuǎn)程監(jiān)控,實現(xiàn)少人或無人值守。正是有了這種控制器,才使開關(guān)電源設(shè)備成為智能電源。
2.2 控制器的主要功能有:
a) 檢測:可檢測系統(tǒng)交流供電、電池狀態(tài)、整流器狀態(tài)、電池電流、主分路電流及故障內(nèi)容。
b) 控制:系統(tǒng)開機(jī)/關(guān)機(jī)、均充開/關(guān)、整流器開機(jī)/關(guān)機(jī)、電池試驗開/關(guān)。參數(shù)設(shè)置 如下:
――系統(tǒng)參數(shù):整流器柜數(shù);
――電池參數(shù):均充電壓、浮充電壓、 過壓值、欠壓值、充電限流值、轉(zhuǎn)換電流等;
――監(jiān)控參數(shù):設(shè)備編號、通訊接口、撥號方式、電話號碼及故障回報開/關(guān)等。
通過通訊接口:RS232或RS485與監(jiān)控中心連接實現(xiàn)“三遙”。
3 智能高頻開關(guān)電源監(jiān)控系統(tǒng)應(yīng)用
3.1 智能高頻開關(guān)電源監(jiān)控系統(tǒng)是一個通信電源監(jiān)控遠(yuǎn)程監(jiān)控的集中監(jiān)控系統(tǒng),其主要功能是對監(jiān)控范圍內(nèi)的電壓環(huán)系統(tǒng)進(jìn)行遙信、遙測、遙控,實時監(jiān)視系統(tǒng)和設(shè)備的運行狀態(tài),記錄和處理監(jiān)控數(shù)據(jù),及時檢測故障并通知維護(hù)人員處理,從而實現(xiàn)通信站的無人或少人值守,以及電源的集中維護(hù)和優(yōu)化管理,提高供電系統(tǒng)的可靠性和通信設(shè)備的安全性。
3.2 智能高頻開關(guān)電源監(jiān)控系統(tǒng)的基本機(jī)構(gòu),它一般是由集中監(jiān)控中心(Supervision Center SC)、區(qū)域監(jiān)控中心(Supervision Station SS)監(jiān)控單元(Supervision Unit SU)和現(xiàn)場監(jiān)控模塊(Supervision Module SM)構(gòu)成。
根據(jù)用戶及監(jiān)控系統(tǒng)工程規(guī)范的要求,監(jiān)控系統(tǒng)組網(wǎng)方案為三級結(jié)構(gòu):
a) 集中監(jiān)控中心。設(shè)在最高級監(jiān)控中心機(jī)房內(nèi),負(fù)責(zé)處理、存儲、顯示、管理各二級單位的監(jiān)控站點;
b) 區(qū)域監(jiān)控中心。各二級單位監(jiān)控中心機(jī)房內(nèi),負(fù)責(zé)查詢、處理、存儲、管理各自所轄的監(jiān)控站;
c) 現(xiàn)場監(jiān)控單元。各單位所轄單個通信站等監(jiān)控點,負(fù)責(zé)采集現(xiàn)場監(jiān)控單元各個被監(jiān)控設(shè)備的參數(shù)。
3.3 監(jiān)控系統(tǒng)傳輸方式
3.3.1 任何一種監(jiān)控系統(tǒng)都必須獲取監(jiān)控數(shù)據(jù),傳輸方式則是達(dá)到這一目的不可缺少的手段。智能監(jiān)控系統(tǒng)的組網(wǎng)、監(jiān)控系統(tǒng)的規(guī)模及監(jiān)控系統(tǒng)的監(jiān)控量(內(nèi)容)與傳輸方式具有密切的關(guān)系。
3.3.2 在監(jiān)控系統(tǒng)中,不同的網(wǎng)絡(luò)級別之間,可以采用不同的傳輸方式。
a) 監(jiān)控模塊(SM)與監(jiān)控單元(SU)之間的傳輸方式
監(jiān)控模塊(SM)與監(jiān)控單元(SU)都處于監(jiān)控現(xiàn)場,距離較近,一般采用專用數(shù)據(jù)總線,物理接口與傳輸速率有以下幾種:
――V.11/RS422 1.2-48kbit/s
――V.10/RS432 1.2-48kbit/s
――RS485 1.2-48kbit/s
――RS-232 1.2-19.2kbit/s等。
b) 監(jiān)控單元(SU)與上級監(jiān)控中心之間的傳輸方式
監(jiān)控單元(SU)與區(qū)域監(jiān)控中心(SS)之間,宜采用兩種傳輸手段,主輔備用,并能自動切換;而對于區(qū)域監(jiān)控中心(SS)與監(jiān)控中心(SC)之間的傳輸,可用的傳輸方式很多,一般應(yīng)以專線為主,計算機(jī)公網(wǎng)或撥號公網(wǎng)電話網(wǎng)為輔,專線和撥號線之間應(yīng)能自動切換。用于監(jiān)控的傳輸網(wǎng)絡(luò)有以下幾種:
――數(shù)字?jǐn)?shù)據(jù)網(wǎng)(DDN);
――分組交換網(wǎng)(PSDN);
――幀中繼(Frame Relay);
――異步傳輸模式(ATM);
――話音專線(采用Modem);
――撥號電話線(采用Modem)。
3.4 監(jiān)控系統(tǒng)特點
a) 系統(tǒng)結(jié)構(gòu)擴(kuò)展性強(qiáng)。可根據(jù)用戶需求進(jìn)行多級組網(wǎng),升級平滑無需收取任何軟件費用。
b) 現(xiàn)場監(jiān)控單元采集設(shè)備模塊化擴(kuò)展性強(qiáng)。現(xiàn)場采集設(shè)備模塊化設(shè)計有多種形態(tài)組合,采集設(shè)備有充分?jǐn)U展接口作為預(yù)留。
4 結(jié)論
篇4
【關(guān)鍵詞】高壓直流電;通信電源;高頻開關(guān)
一、引言
數(shù)據(jù)通訊的業(yè)務(wù)發(fā)展里程比較短,發(fā)展速度比較快,前幾年,通信數(shù)據(jù)設(shè)備供電的UPS不間斷電源系統(tǒng)配置多為200 KVA以下的1+1 并機(jī)冗余系統(tǒng)。但是現(xiàn)在,信息技術(shù)的快速發(fā)展,帶動了通信數(shù)據(jù)技術(shù)質(zhì)的飛躍,尤其是快速發(fā)展IDC業(yè)務(wù),使不間斷大容量UPS電源系統(tǒng)大幅增加,400KVA 2+1并機(jī)冗余系統(tǒng)成為了主要的UPS 不間斷電源系,其電池配備多為6V和12V。以下就是對高壓直流電的可行性和優(yōu)勢進(jìn)行分析,并且闡述通信電源中的高頻開關(guān)整流模塊設(shè)計。
二、高壓直流電的供電可行性及優(yōu)勢
我國目前幾乎都使用交流電220v的服務(wù)器接入UPS用電業(yè)務(wù)的電源之中,AC/DC 整流電路和AC/DC 整流電路著兩部分組成了服務(wù)器的內(nèi)部電源。其中,服務(wù)器的濾波器、全橋整流電路和平滑濾波等電路組成了服務(wù)器,高頻逆變電路、隔離變壓器和整流濾波電路等構(gòu)成了DC/DC 變換電路。一般情況下,服務(wù)器允許的交流輸入電壓為 220 V±25%的范圍內(nèi),即是165- 275V,也就是說,電容的平均電壓的范圍198- 330 V是整流后濾波,389 V為最高峰值電壓。直流母線滿足服務(wù)器工作電源要求的波動范圍是在216-282V之間。此外,高壓直流電源技術(shù)已經(jīng)成熟的廣泛地應(yīng)用于通信設(shè)備中,并且已經(jīng)有幾十年的運行經(jīng)驗了,通信用高壓直流電源其電壓等級與電力用直流操作電源相同。因此,電力用直流操作電源系統(tǒng)對于通信用高壓直流電源的系統(tǒng)設(shè)計來說,有很多可以借鑒的優(yōu)點。另外,高頻開關(guān)式整流器的成功運行和維護(hù)經(jīng)驗也有幾十余年了。
高壓直流電的供電優(yōu)勢有:
1)高壓直流電在供電備份冗余上與直流-48V開關(guān)整流模塊的配置幾乎相同,減輕了供電系統(tǒng)的配置負(fù)擔(dān),只需要整流模塊 N+1的并份即可(N為主用模塊數(shù)量)。
2)在高壓直流供電系統(tǒng)中,整流機(jī)柜并機(jī)比較方便,可以提高系統(tǒng)擴(kuò)容效率,節(jié)約投資成本。
3)該模式的控制系統(tǒng)與UPS相比較,供電模式并機(jī)簡單,不存在交流電源振幅、頻率、相位等參數(shù),減少了系統(tǒng)的故障點。
4)直流開關(guān)整流器模塊為該系統(tǒng)的核心部位,維護(hù)起來比較方便。
5)該系統(tǒng)在整組后,備電池單體只數(shù)相應(yīng)的減少了很多,也減少了系統(tǒng)中的故障發(fā)生,確保了系統(tǒng)供電安全的可靠性。
6)系統(tǒng)中不存在單瓶頸故障隱患,因為沒有設(shè)置自動靜態(tài)旁路開關(guān)。
7)不需要反復(fù)變換,系統(tǒng)變換效率與UPS比較,其供電性能稍高,有利于電能的節(jié)約。240v高壓直流電供電模式在國內(nèi)的電信運營商中的應(yīng)用,已經(jīng)有十幾年的經(jīng)驗了,經(jīng)過運營事實證明了高壓直流供電模式對于電信數(shù)據(jù)業(yè)務(wù)來說是比較安全可靠的。
三、高頻開關(guān)電源系統(tǒng)中的的整流模式設(shè)計
高頻開關(guān)電源系統(tǒng)中的重要部分就是整流模塊,因為整流模式的穩(wěn)定性直接關(guān)系到系統(tǒng)的直流電壓輸出和工作時電壓輸出的正常。本文所闡述的整流模式設(shè)計,主要是利用無源PFC和DC/DC變換器的原理,在模塊整流原理上進(jìn)行的改進(jìn)和完善,以實現(xiàn)使模塊能夠有效完成整流作用的目的。其工作原理框圖如圖1所示:
圖1 整理模式的工作原理圖
在工作過程中,想要保證模塊后級電路的安全,就應(yīng)該使其先通過防雷處理和濾波對輸入的三相交流進(jìn)行處理。經(jīng)過處理后,把三相交流轉(zhuǎn)換成高壓直流的時候要經(jīng)過整流和無源PFC,高壓直流要電壓要經(jīng)過DC/DC變換器再次轉(zhuǎn)換才能輸出。此外,模塊控制部分還發(fā)揮著保證輸出電壓的穩(wěn)定的作用以及保護(hù)各模塊部件的作用,例如負(fù)責(zé)過壓、過流以及短路保護(hù)等作用。模塊還在遠(yuǎn)程監(jiān)控中提供了遙控、遙調(diào)、遙測、遙信等四遙接口。有效功率除以總耗電量(視在功率)的比值就是即功率因數(shù)校正,簡稱PFC,它用來表示有效功率與總耗電量(視在功率)之間的關(guān)系。無源PFC般情況下由二極管、電阻、電容和電感等無源器材組成,是指不使用一些有源器件,例如晶體管等組成的校正電路。本文中的PFC組成就是利用電感上的電流不能突變的特性來平滑電容充電強(qiáng)脈沖的波動,以實現(xiàn)改善電路中電流的畸變的目的,就是在整流橋堆和濾波電容之間加1個電感,改善功率因數(shù)和電磁干擾,并利用電感上的電壓超前于電流的特性,來補(bǔ)償濾波電容電流超前電壓的特性。但是這種方式對于校正電流畸變和補(bǔ)償功率因數(shù)的效果有限,只能實現(xiàn)抑制電流突變的目的,是一種簡單的補(bǔ)償措施。
固定的直流電壓借助DC/DC變換器就可以變換為可變的直流電壓,這種控制的優(yōu)點就是能夠節(jié)約電能、提高平穩(wěn)性和響應(yīng)的速度。一般情況下,把變阻器換成直流斬波器,可以節(jié)約20%~30%的電能。直流斬波器的優(yōu)勢有:調(diào)壓、抑制電網(wǎng)側(cè)諧波電流噪聲等作用。本文所說的DC/DC變換器,采用的是雙管正激式DC/DC變換器,變壓器T1發(fā)揮著隔離和變壓的效果,如果想要實現(xiàn)能量的儲存及傳遞只需要在輸出端要加一個電感器Lo(續(xù)流電感)即可。由于VD1、VD2的導(dǎo)通限制了兩個調(diào)整管關(guān)斷時所承受的電壓,因此,變壓器初級無再有復(fù)位繞組。整流二極VD3和一個續(xù)流二極管VD4既可以構(gòu)成一個輸出回路,也可以選用回復(fù)時間比較快的VD3、VD4。為了實現(xiàn)降低文波電壓的效果,應(yīng)該選擇大容量的濾波電容。雙管正激式DC/DC變換器的工作特點有以下幾點:
1)VD1、VD2應(yīng)該選擇快恢復(fù)管,使它們在其實際設(shè)計和調(diào)試中只許很短的時間就可以恢復(fù),滿足兩個開關(guān)在任何工作狀態(tài)下可以承受的電壓都不會超過UIN和Ud的條件;
2)雙管正激式DC/DC變換器不需要復(fù)位電路,與單端正激式DC/DC變換器相比,其電路和變壓器的設(shè)計比較簡化,即使使用耐壓值較低功率器件,它也會有很大的功率等級;
3)工作狀態(tài)比較一致的兩個開關(guān)管,會出現(xiàn)同時通態(tài)或斷態(tài)的狀況,因此,可以選擇智能高頻開關(guān)電源,整流電路將交流電變?yōu)槊}動直流電的時候,會含有大量的交流成分(稱為紋波電壓)。
想要獲得平滑的直流電壓,可以加接濾波電路在整流電路的后面,達(dá)到濾去交流部分的目的。縮短二極管得到時間,應(yīng)該留有足夠的電流裕量,可以在橋式整流電路輸出端與負(fù)載之間并聯(lián)一個大電容,電容CO充電的瞬時電流較大,會導(dǎo)致二極管損壞。
四、總結(jié)
綜上所述,本文主要針對高壓直流通信電源中的高頻開關(guān)整流模塊設(shè)計的闡述,可以發(fā)現(xiàn)利用無源PFC電路,能夠?qū)崿F(xiàn)改善電路中電流畸變的目的。該系統(tǒng)可以準(zhǔn)確的將進(jìn)行交流變換,缺點就是成本比較高,同時對于備用電源充電時的均勻性比較弱,防雷濾波的效果也不是太好,因此,需要在這些方面進(jìn)行提高。
參考文獻(xiàn)
[1]李穩(wěn)孫.高壓直流供電模式的探討[J].現(xiàn)代電信科技,2011,03:66-67.
篇5
當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機(jī)電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠(yuǎn)的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟(jì)、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。
1.電力電子技術(shù)的發(fā)展
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進(jìn)了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進(jìn)入現(xiàn)代電力電子時代。
1.1整流器時代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機(jī)提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機(jī)車、電傳動的內(nèi)燃機(jī)車、地鐵機(jī)車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。
1.2逆變器時代
七十年代出現(xiàn)了世界范圍的能源危機(jī),交流電機(jī)變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補(bǔ)償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
1.3變頻器時代
進(jìn)入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細(xì)加工技術(shù)和高壓大電流技術(shù)有機(jī)結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機(jī)遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達(dá)到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機(jī)變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機(jī)電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域
2.1計算機(jī)高效率綠色電源
高速發(fā)展的計算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會,同時也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計算機(jī)全面采用了開關(guān)電源,率先完成計算機(jī)電源換代。接著開關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。
計算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護(hù)署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關(guān)電源
通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機(jī)、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負(fù)載。為了在逆變器故障時仍能向負(fù)載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
2.5變頻器電源
變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機(jī)實現(xiàn)無級調(diào)速。
國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。
2.6高頻逆變式整流焊機(jī)電源
高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
2.7大功率開關(guān)型高壓直流電源
大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。
自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。
國內(nèi)對靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關(guān)電源供電系統(tǒng)
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點。已被大型計算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動機(jī)驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3.高頻開關(guān)電源的發(fā)展趨勢
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達(dá)到近于理想的負(fù)載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機(jī)、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。
3.1高頻化
理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機(jī),還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進(jìn)行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟(jì)效益,更可體現(xiàn)技術(shù)含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標(biāo)準(zhǔn)”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護(hù)電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機(jī)的體積,更方便了整機(jī)的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴(yán)重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機(jī)的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴(yán)格、合理的熱、電、機(jī)械方面的設(shè)計,達(dá)到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機(jī)體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔(dān)負(fù)載電流,一旦其中某個模塊失效,其它模塊再平均分擔(dān)負(fù)載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。
3.3數(shù)字化
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機(jī)處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機(jī)控制時,數(shù)字化技術(shù)就離不開了。
3.4綠色化
電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴(yán)重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀(jì)末,各種有源濾波器和有源補(bǔ)償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀(jì)批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。
現(xiàn)代電力電子技術(shù)是開關(guān)電源技術(shù)發(fā)展的基礎(chǔ)。隨著新型電力電子器件和適于更高開關(guān)頻率的電路拓?fù)涞牟粩喑霈F(xiàn),現(xiàn)代電源技術(shù)將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應(yīng)用技術(shù)下,由于功率器件性能的限制而使開關(guān)電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關(guān)電源性能的影響減至最小,新型的電源電路拓?fù)浜托滦偷目刂萍夹g(shù),可使功率開關(guān)工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關(guān)電源工作效率,設(shè)計出性能優(yōu)良的開關(guān)電源。
篇6
當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機(jī)電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠(yuǎn)的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng) 濟(jì)、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。
1. 電力電子技術(shù)的發(fā)展
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進(jìn)了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進(jìn)入現(xiàn)代電力電子時代。
1.1 整流器時代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機(jī)提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機(jī)車、電傳動的內(nèi)燃機(jī)車、地鐵機(jī)車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。
1.2 逆變器時代
七十年代出現(xiàn)了世界范圍的能源危機(jī),交流電機(jī)變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補(bǔ)償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
1.3 變頻器時代
進(jìn)入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細(xì)加工技術(shù)和高壓大電流技術(shù)有機(jī)結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機(jī)遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達(dá)到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機(jī)變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機(jī)電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
2. 現(xiàn)代電力電子的應(yīng)用領(lǐng)域
2.1 計算機(jī)高效率綠色電源
高速發(fā)展的計算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會,同時也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計算機(jī)全面采用了開關(guān)電源,率先完成計算機(jī)電源換代。接著開關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。
計算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護(hù)署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。
2.2 通信用高頻開關(guān)電源
通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3 直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源), 同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
2.4 不間斷電源(UPS)
不間斷電源(UPS)是計算機(jī)、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,
另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負(fù)載。為了在逆變器故障時仍能向負(fù)載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。 現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
2.5 變頻器電源
變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機(jī)實現(xiàn)無級調(diào)速。
國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。
2.6 高頻逆變式整流焊機(jī)電源
高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合, 整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
2.7 大功率開關(guān)型高壓直流電源
大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。
自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。
國內(nèi)對靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。
2.8 電力有源濾波器
傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流; (2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。
2.9 分布式開關(guān)電源供電系統(tǒng)
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點。已被大型計算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動機(jī)驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3. 高頻開關(guān)電源的發(fā)展趨勢
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達(dá)到近于理想的負(fù)載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機(jī)、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。
3.1 高頻化
理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的 5~l0%。無論是逆變式整流焊機(jī),還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合 閘用等各種直流電源也可以根據(jù)這一原理進(jìn)行改造, 成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟(jì)效益,更可體現(xiàn)技術(shù)含量的價值。
3.2 模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標(biāo)準(zhǔn)”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護(hù)電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機(jī)的體積,更方便了整機(jī)的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴(yán)重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊,它把一臺整機(jī)的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴(yán)格、合理的熱、電、 機(jī)械方面的設(shè)計,達(dá)到優(yōu)化完美的境地。它類似于微
電子中的用戶專用集成電路。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機(jī)體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔(dān)負(fù)載電流,一旦其中某個模塊失效,其它模塊再平均分擔(dān)負(fù)載電流。這樣,不但提高了功率容量, 在有限的器件容量的情況下滿足了大電流輸出的要求, 而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。 3.3 數(shù)字化
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機(jī)處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC) 問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機(jī)控制時,數(shù)字化技術(shù)就離不開了。
3.4 綠色化
電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電, 這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴(yán)重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀(jì)末,各種有源濾波器和有源補(bǔ)償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀(jì)批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。
篇7
(北京中唐科華電力設(shè)備有限公司河北分公司 河北 邯鄲 056003)
【摘要】電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。
關(guān)鍵詞 電力電子技術(shù);發(fā)展
現(xiàn)代電源技術(shù)是應(yīng)用電力電子半導(dǎo)體器件,綜合自動控制、計算機(jī)(微處理器)技術(shù)和電磁技術(shù)的多學(xué)科邊緣交又技術(shù)。在各種高質(zhì)量、高效、高可靠性的電源中起關(guān)鍵作用,是現(xiàn)代電力電子技術(shù)的具體應(yīng)用。
當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機(jī)電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠(yuǎn)的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟(jì)、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。
1.電力電子技術(shù)的發(fā)展?
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進(jìn)了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進(jìn)入現(xiàn)代電力電子時代。
2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域?
2.1計算機(jī)高效率綠色電源。?
(1)高速發(fā)展的計算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會,同時也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計算機(jī)全面采用了開關(guān)電源,率先完成計算機(jī)電源換代。接著開關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。?
(2)計算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護(hù)署l992年6月17日“能源之星”計劃規(guī)定,桌上型個人電腦或相關(guān)的外圍設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。?
2.2通信用高頻開關(guān)電源。?
(1)通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50~100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。?
(2)因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。?
2.3直流-直流(DC/DC)變換器。?
(1)DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。?
(2)通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。?
2.4不間斷電源(UPS)。?
(1)不間斷電源(UPS)是計算機(jī)、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負(fù)載。為了在逆變器故障時仍能向負(fù)載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。?
(2)現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。?
(3)目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。?
2.5變頻器電源。?
(1)變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機(jī)實現(xiàn)無級調(diào)速。?
(2)國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。?
2.6高頻逆變式整流焊機(jī)電源。?
(1)高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。?
(2)逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。?
(3)由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。?
(4)國外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29Kg。?
2.7大功率開關(guān)型高壓直流電源。?
(1)大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100KW。?
(2)自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。?
(3)國內(nèi)對靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷鳎捎萌珮蛄汶娏鏖_關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。?
2.8電力有源濾波器。?
(1)傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。?
(2)電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。?
2.9分布式開關(guān)電源供電系統(tǒng)。?
(1)分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。?
(2)八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。?
(3)分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點。已被大型計算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動機(jī)驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3.高頻開關(guān)電源的發(fā)展趨勢?
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達(dá)到近于理想的負(fù)載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機(jī)、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。?
3.1高頻化。
理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機(jī),還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進(jìn)行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟(jì)效益,更可體現(xiàn)技術(shù)含量的價值。?
3.2模塊化。?
(1)模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標(biāo)準(zhǔn)”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護(hù)電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機(jī)的體積,更方便了整機(jī)的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴(yán)重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機(jī)的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴(yán)格、合理的熱、電、機(jī)械方面的設(shè)計,達(dá)到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。?
(2)由此可見,模塊化的目的不僅在于使用方便,縮小整機(jī)體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔(dān)負(fù)載電流,一旦其中某個模塊失效,其它模塊再平均分擔(dān)負(fù)載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。?
3.3數(shù)字化。
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機(jī)處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機(jī)控制時,數(shù)字化技術(shù)就離不開了。?
3.4綠色化。?
(1)電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴(yán)重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀(jì)末,各種有源濾波器和有源補(bǔ)償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀(jì)批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。?
(2)現(xiàn)代電力電子技術(shù)是開關(guān)電源技術(shù)發(fā)展的基礎(chǔ)。隨著新型電力電子器件和適于更高開關(guān)頻率的電路拓?fù)涞牟粩喑霈F(xiàn),現(xiàn)代電源技術(shù)將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應(yīng)用技術(shù)下,由于功率器件性能的限制而使開關(guān)電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關(guān)電源性能的影響減至最小,新型的電源電路拓?fù)浜托滦偷目刂萍夹g(shù),可使功率開關(guān)工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關(guān)電源工作效率,設(shè)計出性能優(yōu)良的開關(guān)電源。
4.總而言之?
篇8
劉志坤 王軍輝 孔亮 李可可 李子豪
(河南理工大學(xué) 河南?焦作 454000)
摘 要 高頻變壓器是作為開關(guān)電源最主要的組成部分。開關(guān)電源一般采用半橋式功率轉(zhuǎn)換電路,工作時兩個開關(guān)三極管輪流導(dǎo)通來產(chǎn)生100kHz的高頻脈沖波,然后通過高頻變壓器進(jìn)行降壓,輸出低電壓的交流電,高頻變壓器各個繞組線圈的匝數(shù)比例則決定了輸出電壓的多少,本文就單端反激式開關(guān)電源變換器等問題作了相應(yīng)的分析。
關(guān)鍵詞 高頻變壓器 單端反激式 開關(guān)電源
中圖分類號:TM4 文獻(xiàn)標(biāo)識碼:A
1單端反激式開關(guān)電源變換器
單端反激式變壓器又稱電感儲能式變壓器,當(dāng)高壓開關(guān)管VT1 被脈寬調(diào)制(Pulse Width Modulation,PWM)脈沖信號激勵而導(dǎo)通時,直流輸入電壓施加到高頻變壓器T 的原邊繞組上,在變壓器次級繞組上感應(yīng)出的電壓使整流管VD1 反向偏置而阻斷,此時電源能量以磁能形式存儲在初級電感中;當(dāng)開關(guān)管VT1 截止時,原邊繞組兩端電壓極性反向,副邊繞組上的電壓極性顛倒,使D1 導(dǎo)通,儲存在變壓器中的能量釋放給負(fù)載。
2變壓器磁芯的選擇
開關(guān)電源輸出功率為120w,磁芯磁導(dǎo)率為:
u=uxu0=2000-7=8 -4(N/A2)…… (1)
其中開關(guān)管最大占空比:
D max = 0% (2)
其中, Vor是副邊折射到原邊的反射電壓大小為135v;Vdcmin為最小輸入直流電壓,大小為120v;Vds是開關(guān)管漏源極電壓,大小為10v;將以上數(shù)據(jù)代入后,得到輸入占空比為50%;開關(guān)電源效率=80%;則所需要變壓器面積乘積為1.3 cm^2這里取窗口面積利用系數(shù)Kw=0.4;
電流密度J=400A/cm^2;磁感應(yīng)強(qiáng)度Bm=0.25;脈動電流和峰值電流比例系數(shù)為Krp=0.7;由于骨架需要,這里選擇EI40磁芯,EI40參數(shù):A=40mm ,B=26.8mm ,C=11.8mm,D=11.8mm, E=20.3mm, F=27.3mm;
其磁芯截面積為:Ac=1.2*1.2=1.44cm^2;
窗口面積為:Am=0.8*2.03=1.62cm^2;
磁路長度為:L=9.2*10^-2m
磁芯面積乘積:App=Ac*Am=1.44*1.62=2.33cm^2;
綜合以上計算,EI40型鐵芯滿足設(shè)計要求。
2.1原邊繞組匝數(shù)Np的計算
根據(jù)公式 , (3)
代入計算可得Np=48.4匝,實際取值為50匝;
2.2輸出繞組匝數(shù)的計算
公式 (4)
其中,Uf是整流管的電壓,大小取0.4V;代入公式可得:N2=9.76匝,這里取10匝。
2.3反饋繞組匝數(shù)的計算
根據(jù)公式(4)可得,反饋繞組匝數(shù)N2’=8.5匝,這里取N2’=9匝。
2.4磁芯氣隙寬度的計算
在單端反激式開關(guān)電源中,高頻變壓器磁芯的氣隙對電源性能影響較大。為防止變壓器磁芯發(fā)生磁飽和現(xiàn)象,要在磁芯中留有氣隙。
原邊電感計算公式為:, (5)
其中Emin這里取300v,Pin=150w,Dmax=0.5;代入公式可得,Lp=750uH;
原邊電流最大值為: (6)
將Lp,代入公式可得,Ip=2A;
根據(jù)公式: (7)
其中,Ae是有效磁芯面積,大小為1.44cm^2,將Lp代入得, =0.06cm。
2.5繞組線徑的計算:
經(jīng)相關(guān)運算;初級線徑大小為:d=0.94mm;二次側(cè)線徑大小為:d=1.68mm。
根據(jù)以上數(shù)據(jù)分析可得:原邊繞組 N1 用 0.5mm 線徑繞 50 匝;輸出繞組 N2 用0.8mm 線徑雙線,并繞10 匝;反饋繞組N3用0.5 線徑繞9 匝。
3結(jié)束語
本文針對變壓器的相關(guān)指標(biāo)做了簡單的分析計算,希望能夠給從事相關(guān)工作的人員提供以下參考。
參考文獻(xiàn)
篇9
1 電磁干擾的產(chǎn)生與傳輸
電磁干擾傳輸有兩種方式:一種是傳導(dǎo)傳輸方式,另一種則是輻射傳輸方式。傳導(dǎo)傳輸是在干擾源和敏感設(shè)備之間有完整的電路連接,干擾信號沿著連接電路傳遞到接收器而發(fā)生電磁干擾現(xiàn)象。
輻射傳輸是干擾信號通過介質(zhì)以電磁波的形式向外傳播的干擾形式。常見的輻射耦合有三種:1)一個天線發(fā)射的電磁波被另一個天線意外地接收,稱為天線對天線的耦合,2)空間電磁場經(jīng)導(dǎo)線感應(yīng)而耦合,稱為場對線的耦合。3)兩根平等導(dǎo)線之間的高頻信號相互感應(yīng)而形成的耦合,稱為線對線的感應(yīng)耦合。
2 電磁干擾的產(chǎn)生機(jī)理
從擾的敏感設(shè)備角度來說,干擾耦合又可分為傳導(dǎo)耦合和輻射耦合兩類。
傳導(dǎo)耦合模型
傳導(dǎo)耦合按其原理可分為電阻性耦合、電容性耦合和電感性耦合三種基本耦合方式。
輻射耦合模型
輻射耦合是干擾耦合的另一種方式,除了從干擾源發(fā)出的有意輻射外,還有大量的無意輻射。同時,PCB板上的走線無論是電源線、信號線、時鐘線、數(shù)據(jù)線或者控制線等,都能起到天線的效果,即可輻射出干擾波,又可起到接收作用。
3 電磁干擾控制技術(shù)
①傳輸通道抑制
濾波:在設(shè)計和選用濾波器時應(yīng)注意頻率特性、耐壓性能、額定電流、阻抗特性、屏蔽和可靠性。濾波器的安裝正確與否對其插入損耗特性影響很大,只有安裝位置恰當(dāng),安裝方法正確,才能對干擾起到預(yù)期的濾波作用。在安裝濾波器時應(yīng)考慮安裝位置,輸入輸出側(cè)的配線必須屏蔽隔離,以及高頻接地和搭接方法。
屏蔽:電磁屏蔽按原理可分為電場屏蔽、磁場屏蔽和電磁場屏蔽三種。電場屏蔽包含靜電屏蔽和交變電場屏蔽,磁場屏蔽包含低頻磁場屏蔽和高頻磁場屏蔽。不同類型的電磁屏蔽對屏蔽體的要求不同。在實際的屏蔽中,電磁屏蔽效能更大程度上依賴于屏蔽體的結(jié)構(gòu),即導(dǎo)電的連續(xù)性。實際的屏蔽體由于制造、裝配、維修、散熱、觀察及接口連接要求,其上面一般都開有形狀各異、尺寸不同的孔縫,這些孔縫對于屏蔽體的屏蔽效能起著重要的影響作用,因此必須采取措施來抑制孔縫的電磁泄漏。
接地:接地有安全接地和信號接地兩種。同時,接地也會引入接地阻抗及地回路干擾。接地技術(shù)包括接地點的選擇、電路組合、接地的設(shè)計和抑制接地干擾措施的合理應(yīng)用等。
搭接:搭接是指導(dǎo)體間低阻抗連接,只有良好的搭接才能使電路完成其設(shè)計功能,使干擾的各種抑制措施得以發(fā)揮作用。搭接方法可分為永久性搭接和半永久性搭接兩種,而搭接類型分為直接搭接和間接搭接。
布線:布線是印刷電路板電磁兼容性設(shè)計的關(guān)鍵,應(yīng)選擇合理的導(dǎo)線寬度,采取正確的布線策略,如加粗地線,將地線閉合成環(huán)路,減少導(dǎo)線不連續(xù)性,采用多層板等。
②空間分離
空間分離是抑制空間輻射騷擾和感應(yīng)耦合騷擾的有效方法,通過加大騷擾源和接受器敏感設(shè)備之間的空間距離,使騷擾電磁場到達(dá)敏感設(shè)備時的強(qiáng)度已衰減到低于接受設(shè)備敏感度門限,從而達(dá)到抑制電磁干擾的目的。由電磁場理論可知,場強(qiáng)在近區(qū)感應(yīng)場中以l/r3的方式衰減,遠(yuǎn)區(qū)輻射場的場強(qiáng)分布按1/r方式減小。因此,為了滿足系統(tǒng)的電磁兼容性要求,盡量將組成系統(tǒng)的各個設(shè)備間的空間距離增大。在設(shè)備、系統(tǒng)布線中,限制平行線纜的最小間距,以減少串?dāng)_。在PCB設(shè)計中,規(guī)定引線條間的最小間隔。另外,空間分離也包括在空間有限的情況下,對騷擾源輻射方向的方位調(diào)整、騷擾源電場矢量與磁場矢量的空間取向的控制。
③時間分離
當(dāng)騷擾源非常強(qiáng),不易采用其他方法可靠抑制時,通常采用時間分隔的方法,使有用信號在騷擾信號停止發(fā)射的時間內(nèi)傳輸,或者當(dāng)強(qiáng)騷擾信號發(fā)射時,使易受騷擾的敏感設(shè)備短時關(guān)閉,以避免遭受損害。時間分隔控制有兩種形式,一種是主動時間分隔,適用于有用信號出現(xiàn)時間與干擾信號出現(xiàn)時間有確定先后關(guān)系的情況,另一種是被動時間分隔,按照干擾信號與有用信號出現(xiàn)的特征使其中某一信號迅速關(guān)閉,從而達(dá)到時間上不重合、不覆蓋的控制要求。
④頻譜管理
頻譜的規(guī)劃劃分是把各頻段劃分給各種無線電業(yè)務(wù),為特定用戶制定頻段。制定國家標(biāo)準(zhǔn)規(guī)范是防止干擾以及在某些情況下確保通信系統(tǒng)達(dá)到所需通信性能的基礎(chǔ)。這包括無線電設(shè)備的核準(zhǔn)程序,無線電發(fā)射機(jī)、接收機(jī)和其他設(shè)備型號核準(zhǔn)所要求的最低性能標(biāo)準(zhǔn)文件。
⑤電氣隔離
電氣隔離是避免電路中傳導(dǎo)干擾的可靠方法,同時還能使有用信號正常耦合傳輸。常見的電氣隔離耦合形式有機(jī)械耦合、電磁耦合、光電耦合等。DC/DC變換器是一種應(yīng)用廣泛的電器隔離器件,它將一種直流電壓變換成另一種直流電壓,為了防止多個設(shè)備共用一個電源引起共電源內(nèi)阻干擾,應(yīng)用DC/DC變換器單獨對各路供電,以保證電路不受電源中的信號干擾。
開關(guān)電源中的EMC技術(shù)應(yīng)用
1 開關(guān)電源產(chǎn)生干擾的原因
開關(guān)電源首先將工頻交流整流為直流,再逆變?yōu)楦哳l,最后經(jīng)過整流濾波電路輸出,得到穩(wěn)定的直流電壓,因此自身含有大量的諧波干擾。同時,由于變壓器的漏感和輸出二極管的反向恢復(fù)電流造成的尖峰,都形成了潛在的電磁干擾。開關(guān)電源中的干擾源主要集中在電壓、電流變化大的元器件上,突出表現(xiàn)在開關(guān)管、二極管、高頻變壓器等上。
①開關(guān)電路產(chǎn)生的電磁干擾
開關(guān)電路是開關(guān)電源的主要干擾源之一。開關(guān)電路是開關(guān)電源的核心,主要由開關(guān)管和高頻變壓器組成。它產(chǎn)生的du/dt具有較大幅度的脈沖,頻帶較寬且諧波豐富。這種脈沖干擾產(chǎn)生的主要原因是:開關(guān)管負(fù)載為高頻變壓器初級線圈,是感性負(fù)載。在開關(guān)管導(dǎo)通瞬間,初級線圈產(chǎn)生很大的涌流,并在初級線圈的兩端出現(xiàn)較高的浪涌尖峰電壓;在開關(guān)管斷開瞬間,由于初級線圈的漏磁通,致使一部分能量沒有從一次線圈傳輸?shù)蕉尉€圈,儲藏在電感中的這部分能量將和集電極電路中的電容、電阻形成帶有尖峰的衰減振蕩,疊加在關(guān)斷電壓上,形成關(guān)斷電壓尖峰。電源電壓中斷會產(chǎn)生與初級線圈接通時一樣的磁化沖擊電流瞬變,這種瞬變是一種傳導(dǎo)型電磁干擾,既影響變壓器初級,還會使傳導(dǎo)干擾返回配電系統(tǒng),造成電網(wǎng)諧波電磁干擾,從而影響其他設(shè)備的安全和經(jīng)濟(jì)運行。
②整流電路產(chǎn)生的電磁干擾
整流電路中,在輸出整流二極管截止時有一個反向電流,它恢復(fù)到零點的時間與結(jié)電容等因素有關(guān)。其中,能將反向電流迅速恢復(fù)到零的二極管稱為硬恢復(fù)特性二極管,這種二極管在變壓器漏感和其他分布參數(shù)的影響下將產(chǎn)生較強(qiáng)的高頻干擾,其頻率可達(dá)幾十MHz。高頻整流回路中的整流二極管正向?qū)?/p>
時有較大的正向電流流過,在其受反偏電壓而轉(zhuǎn)向截止時,由于PN結(jié)中有較多的載流子積累,因而在載流子消失之前的一段時間里,電流會反向流動,致使載流子消失的反向恢復(fù)電流急劇減少而發(fā)生很大的電流變化(di/dt)。
③高頻變壓器
高頻變壓器的初級線圈、開關(guān)管和濾波電容構(gòu)成的高頻開關(guān)電流環(huán)路可能會產(chǎn)生較大的空間輻射,形成輻射干擾。如果電容濾波容量不足或高頻特性不好,電容上的高頻阻抗會使高頻電流以差模方式傳導(dǎo)到交流電源中形成傳導(dǎo)干擾。需要注意的是,在二極管整流電路產(chǎn)生的電磁干擾中,整流二極管反向恢復(fù)電流的di/dt遠(yuǎn)比續(xù)流二極管反向恢復(fù)電流的di/dt大得多。作為電磁干擾源來研究,整流二極管反向恢復(fù)電流形成的干擾強(qiáng)度大、頻帶寬。但是,整流二極管產(chǎn)生的電壓跳變遠(yuǎn)小于功率開關(guān)管導(dǎo)通和關(guān)斷時產(chǎn)生的電壓跳變。因此,也可不計整流二極管產(chǎn)生的|dr/dt|影響,把整流電路當(dāng)成電磁干擾耦合通道的一部分來研究。
④分布電容引起的干擾
開關(guān)電源工作在高頻狀態(tài),因而其分布電容不可忽略。一方面,散熱片與開關(guān)管集電極間的絕緣片接觸面積較大,且絕緣片較薄,因此兩者間的分布電容在高頻時不能忽略。高頻電流會通過分布電容流到散熱片上,再流到機(jī)殼地,產(chǎn)生共模干擾,另一方面,脈沖變壓器的初次級之間存在著分布電容,可將原邊電壓直接耦合到副邊上,在副邊作直流輸出的兩條電源線上產(chǎn)生共模干擾。
⑤雜散參數(shù)影響耦合通道的特性
在傳導(dǎo)干擾頻段(<30MHz),多數(shù)開關(guān)電源干擾的耦合通道是可以用電路網(wǎng)絡(luò)來描述的。但是,開關(guān)電源中的任何一個實際元器件,如電阻、電容、電感乃至開關(guān)管、二極管都包含有雜散參數(shù),且研究的頻帶愈寬,等值電路的階次愈高。因此,包括各元器件雜散參數(shù)和元器件間的耦合在內(nèi)的開關(guān)電源的等效電路將復(fù)雜得多。在高頻時,雜散參數(shù)對耦合通道的特性影響很大,分布電容的存在成為電磁干擾的通道。另外,在開關(guān)管功率較大時,集電極一般都需加上散熱片,散熱片與開關(guān)管之間的分布電容在高頻時不能忽略,它能形成面向空間的輻射干擾和電源線傳導(dǎo)的共模干擾。
2 開關(guān)電源電磁干擾的控制技術(shù)
要解決開關(guān)電源的電磁干擾問題,可從3個方面入手:1)減小干擾源產(chǎn)生的干擾信號;2)切斷干擾信號的傳播途徑;3)增強(qiáng)受干擾體的抗干擾能力。因此,開關(guān)電源電磁電磁干擾要控制技術(shù)主要有:電路措施、EMI濾波、元器件選擇、屏蔽和印制電路板抗干擾設(shè)計等。
①減少開關(guān)電源本身的干擾
軟開關(guān)技術(shù):在原有的硬開關(guān)電路中增加電感和電容元件,利用電感和電容的諧振,降低開關(guān)過程中的du/dt和di/dt,使開關(guān)器件開通時電壓的下降先于電流的上升,或關(guān)斷時電流的下降先于電壓的上升,來消除電壓和電流的重疊。
開關(guān)頻率調(diào)制技術(shù):通過調(diào)制開關(guān)頻率fc,把集中在fc及其諧波2fc、3fc…上的能量分散到它們周圍的頻帶上,以降低各個頻點上的EMI幅值。該方法不能降低干擾總量,但能量被分散到頻點的基帶上,從而使各個頻點都不超過EMI規(guī)定的限值。為了達(dá)到降低噪聲頻譜峰值的目的,通常有兩種處理方法:隨機(jī)頻率法和調(diào)制頻率法。
共模干擾的有源抑制技術(shù):設(shè)法從主回路中取出一個與導(dǎo)致電磁干擾的主要開關(guān)電壓波形完全反相的補(bǔ)償EMI噪聲電壓,并用它去平衡原開關(guān)電壓。
減小電磁干擾的緩沖電路:其由線性阻抗穩(wěn)定網(wǎng)絡(luò)組成,作用是消除在供電電力線內(nèi)潛在的干擾,包括電力線干擾、電快速瞬變,電涌,電壓高低變化和電力線諧波等。這些干擾對一般穩(wěn)壓電源來說,影響不是很大,但對高頻開關(guān)電源的影響顯著。
濾波:EMI濾波器的主要目的之一,就是要在150kHz~30MHz的頻段范圍獲得較高的插入損耗,但對頻率為50Hz工頻信號不產(chǎn)生衰減,使額定電壓、電流順利通過,同時還必須滿足一定的尺寸要求。任何電源線上的傳導(dǎo)干擾信號,均可用差模和共模信號來表示。在一般情況下,差模干擾幅度小,頻率低,所造成的干擾較小;共模干擾幅度大,頻率高,還可以通過導(dǎo)線產(chǎn)生輻射,所造成的干擾較大。因此,欲削弱傳導(dǎo)干擾,把EMI信號控制在有關(guān)EMC標(biāo)準(zhǔn)規(guī)定的極限電平以下,最有效的方法就是在開關(guān)電源輸入和輸出電路中加裝電磁干擾濾波器。
PCB設(shè)計:PCB抗干擾設(shè)計主要包括PCB布局、布線及接地,其目的是減小PCB的電磁輻射和PCB上電路之間的串?dāng)_。開關(guān)電源布局的最佳方法與其電氣設(shè)計類似。在確定PCB的尺寸形狀后,再確定特殊元器件(如各種發(fā)生器、晶振等)的位置。最后,根據(jù)電路的功能單元,對電路的全部元器件進(jìn)行布局。
元器件的選擇:選擇不易產(chǎn)生噪聲、不易傳導(dǎo)和輻射噪聲的元器件。通常特別值得注意的是,二極管和變壓器等繞組類元器件的選用。反向恢復(fù)電流小、恢復(fù)時間短的快速恢復(fù)二極管是開關(guān)電源高頻整流部分的理想器件。
②切斷干擾信號的傳播途徑一共模、差模電源線濾波器設(shè)計
電源線干擾可以使用電源線濾波器濾除。一個合理有效的開關(guān)電源EMI濾波器應(yīng)該對電源線上差模和共模干擾都有較強(qiáng)的抑制作用。
篇10
現(xiàn)代電源技術(shù)是應(yīng)用電力電子半導(dǎo)體器件,綜合自動控制、計算機(jī)(微處理器)技術(shù)和電磁技術(shù)的多學(xué)科邊緣交又技術(shù)。在各種高質(zhì)量、高效、高可靠性的電源中起關(guān)鍵作用,是現(xiàn)代電力電子技術(shù)的具體應(yīng)用。
當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機(jī)電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠(yuǎn)的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟(jì)、實用,實現(xiàn)高效率和高品質(zhì)用電相結(jié)合。
1.電力電子技術(shù)的發(fā)展
現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進(jìn)了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進(jìn)入現(xiàn)代電力電子時代。
1.1整流器時代
大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機(jī)提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機(jī)車、電傳動的內(nèi)燃機(jī)車、地鐵機(jī)車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時的產(chǎn)物。
1.2逆變器時代
七十年代出現(xiàn)了世界范圍的能源危機(jī),交流電機(jī)變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動態(tài)補(bǔ)償?shù)取_@時的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。
1.3變頻器時代
進(jìn)入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細(xì)加工技術(shù)和高壓大電流技術(shù)有機(jī)結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機(jī)遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達(dá)到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機(jī)變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機(jī)電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。
2.現(xiàn)代電力電子的應(yīng)用領(lǐng)域
2.1計算機(jī)高效率綠色電源
高速發(fā)展的計算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會,同時也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計算機(jī)全面采用了開關(guān)電源,率先完成計算機(jī)電源換代。接著開關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。
計算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護(hù)署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關(guān)電源
通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。
因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機(jī)、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負(fù)載。為了在逆變器故障時仍能向負(fù)載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實現(xiàn)。
現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實現(xiàn)對UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。
目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。
2.5變頻器電源
變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動交流異步電動機(jī)實現(xiàn)無級調(diào)速。
國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點。預(yù)計到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。
2.6高頻逆變式整流焊機(jī)電源
高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。
逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。
由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。
2.7大功率開關(guān)型高壓直流電源
大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。
自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。
國內(nèi)對靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。
電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關(guān)電源供電系統(tǒng)
分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。
八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點,論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。
分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點。已被大型計算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動機(jī)驅(qū)動電源等領(lǐng)域也有廣闊的應(yīng)用前景。
3.高頻開關(guān)電源的發(fā)展趨勢
在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達(dá)到近于理想的負(fù)載匹配和驅(qū)動控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機(jī)、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。
3.1高頻化
理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計的5~l0%。無論是逆變式整流焊機(jī),還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進(jìn)行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟(jì)效益,更可體現(xiàn)技術(shù)含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實質(zhì)上都屬于“標(biāo)準(zhǔn)”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動保護(hù)電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機(jī)的體積,更方便了整機(jī)的設(shè)計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴(yán)重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機(jī)的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴(yán)格、合理的熱、電、機(jī)械方面的設(shè)計,達(dá)到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機(jī)體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔(dān)負(fù)載電流,一旦其中某個模塊失效,其它模塊再平均分擔(dān)負(fù)載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時間。
3.3數(shù)字化
在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機(jī)處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計算機(jī)控制時,數(shù)字化技術(shù)就離不開了。
3.4綠色化
電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設(shè)備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴(yán)重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀(jì)末,各種有源濾波器和有源補(bǔ)償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀(jì)批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。
現(xiàn)代電力電子技術(shù)是開關(guān)電源技術(shù)發(fā)展的基礎(chǔ)。隨著新型電力電子器件和適于更高開關(guān)頻率的電路拓?fù)涞牟粩喑霈F(xiàn),現(xiàn)代電源技術(shù)將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應(yīng)用技術(shù)下,由于功率器件性能的限制而使開關(guān)電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關(guān)電源性能的影響減至最小,新型的電源電路拓?fù)浜托滦偷目刂萍夹g(shù),可使功率開關(guān)工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關(guān)電源工作效率,設(shè)計出性能優(yōu)良的開關(guān)電源。
總而言之,電力電子及開關(guān)電源技術(shù)因應(yīng)用需求不斷向前發(fā)展,新技術(shù)的出現(xiàn)又會使許多應(yīng)用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應(yīng)用領(lǐng)域。開關(guān)電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標(biāo)志著這些技術(shù)的成熟,實現(xiàn)高效率用電和高品質(zhì)用電相結(jié)合。這幾年,隨著通信行業(yè)的發(fā)展,以開關(guān)電源技術(shù)為核心的通信用開關(guān)電源,僅國內(nèi)有20多億人民幣的市場需求,吸引了國內(nèi)外一大批科技人員對其進(jìn)行開發(fā)研究。開關(guān)電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內(nèi)市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關(guān)電源技術(shù)為核心的專用電源、工業(yè)電源正在等待著人們?nèi)ラ_發(fā)。
參考文獻(xiàn)
(l)林渭勛:淺談半導(dǎo)體高頻電力電子技術(shù),電力電子技術(shù)選編,浙江大學(xué),384-390,1992
(2)季幼章:迎接知識經(jīng)濟(jì)時代,發(fā)展電源技術(shù)應(yīng)用,電源技術(shù)應(yīng)用,N0.2,l998
(3)葉治正,葉靖國:開關(guān)穩(wěn)壓電源。高等教育出版社,1998